Role of Reinforcement Particle Size and Its Dispersion on Room Temperature Dry Sliding Wear of AA7075/TiB2 Composites

V. V. Meti, G. Raju, I. G. Siddhalingeshwar, V. Gaitonde
{"title":"Role of Reinforcement Particle Size and Its Dispersion on Room Temperature Dry Sliding Wear of AA7075/TiB2 Composites","authors":"V. V. Meti, G. Raju, I. G. Siddhalingeshwar, V. Gaitonde","doi":"10.4018/ijseims.2022010102","DOIUrl":null,"url":null,"abstract":"Aluminum alloy based metal matrix composites (AMCs) are widely accepted material in the aerospace, automotive, military, and defence applications due to lightweight and high strength. For tribological applications, high-performance wear-resistant materials like AMCs are the candidate materials. In this investigation, AA7075 based composites with different size TiB2 particles were fabricated using in-situ and ultrasound casting techniques (UST). The AMCs were tested using pin-on-disc tribo tester and the effects of different sized TiB2 particles on wear resistance of AA7075/TiB2 composites have been investigated. The wear resistance of AA7075/TiB2 composite fabricated using UST is found to significantly improve when compared to base alloy and also in-situ composite due to refinement in the particle size, reduced the agglomeration, and improved the distribution of TiB2 particles. The test results also revealed the existence of a mixture of mechanically mixed Al–Zn–Fe intermetallic alloy and oxides of these elements.","PeriodicalId":37123,"journal":{"name":"International Journal of Surface Engineering and Interdisciplinary Materials Science","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Surface Engineering and Interdisciplinary Materials Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/ijseims.2022010102","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Materials Science","Score":null,"Total":0}
引用次数: 0

Abstract

Aluminum alloy based metal matrix composites (AMCs) are widely accepted material in the aerospace, automotive, military, and defence applications due to lightweight and high strength. For tribological applications, high-performance wear-resistant materials like AMCs are the candidate materials. In this investigation, AA7075 based composites with different size TiB2 particles were fabricated using in-situ and ultrasound casting techniques (UST). The AMCs were tested using pin-on-disc tribo tester and the effects of different sized TiB2 particles on wear resistance of AA7075/TiB2 composites have been investigated. The wear resistance of AA7075/TiB2 composite fabricated using UST is found to significantly improve when compared to base alloy and also in-situ composite due to refinement in the particle size, reduced the agglomeration, and improved the distribution of TiB2 particles. The test results also revealed the existence of a mixture of mechanically mixed Al–Zn–Fe intermetallic alloy and oxides of these elements.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
增强颗粒尺寸及其分散性对AA7075/TiB2复合材料室温干滑动磨损的影响
铝合金基金属基复合材料(AMCs)由于重量轻、强度高,在航空航天、汽车、军事和国防应用中被广泛接受。对于摩擦学应用,高性能耐磨材料如amc是候选材料。采用原位铸造和超声铸造技术制备了不同尺寸TiB2颗粒的AA7075基复合材料。采用针盘式摩擦试验机对复合材料进行了测试,研究了不同尺寸TiB2颗粒对AA7075/TiB2复合材料耐磨性能的影响。与基体合金和原位复合材料相比,UST制备的AA7075/TiB2复合材料的耐磨性得到了显著提高,这是由于晶粒尺寸的细化,减少了团聚,改善了TiB2颗粒的分布。试验结果还揭示了机械混合的Al-Zn-Fe金属间合金及其氧化物的存在。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
2.60
自引率
0.00%
发文量
22
期刊最新文献
Developing Self-Cleaning Photocatalytic TiO2 Nanocomposite Coatings Wear of Dry Sliding Al 6061-T6 Alloy Under Different Loading Conditions Effect of Yield Strength on the Static and Dynamic Behaviours of Cylindrical Contact Influence of Heat Treatment on Mechanical and Tribological Behaviors of Brass Electroless Nickel Phosphorus Coatings to Mitigate the Corrosion of Construction Steel
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1