Image-based Product Recommendation Method for E-commerce Applications Using Convolutional Neural Networks

IF 0.8 Q4 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Acta Informatica Pragensia Pub Date : 2021-12-02 DOI:10.18267/j.aip.167
Pegah Malekpour Alamdari, N. J. Navimipour, M. Hosseinzadeh, Ali Asghar Safaei, A. Darwesh
{"title":"Image-based Product Recommendation Method for E-commerce Applications Using Convolutional Neural Networks","authors":"Pegah Malekpour Alamdari, N. J. Navimipour, M. Hosseinzadeh, Ali Asghar Safaei, A. Darwesh","doi":"10.18267/j.aip.167","DOIUrl":null,"url":null,"abstract":"Recommender systems (RS) are designed to eliminate the information overload problem in today's e-commerce platforms and other data-centric online services. They help users explore and exploit the system's information environment utilizing implicit and explicit data from internal e-commerce systems and user interactions. Today's product catalogues include pictures to provide visual detail at a glance. This approach can effectively convert potential buyers into customers. Since most e-commerce stores use product images to promote, arouse users' visual desires and encourage them to buy products, this paper develops an image-based RS using deep learning techniques. To perform the research, we use five convolutional neural network (CNN) models to extract the features of the products' images. Then, the system uses the features to calculate the similarity between images. The selected CNN models are VGG16, VGG19, ResNet50, Inception V3 and Xception. We also analysed four versions of the MovieLens dataset to demonstrate the accuracy improvement of the recommendations, including 100k, 1M, 10M and 20M. Results of the experiment showed a significant increase in accuracy compared with traditional approaches. Also, we express many related open issues including use of multiple images per item, different similarity metrics, other CNN models, and the hybridization of image-based and different RS techniques for future studies. This method also provides more accurate product recommendations on e-commerce platforms than traditional methods.","PeriodicalId":36592,"journal":{"name":"Acta Informatica Pragensia","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2021-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Informatica Pragensia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18267/j.aip.167","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 3

Abstract

Recommender systems (RS) are designed to eliminate the information overload problem in today's e-commerce platforms and other data-centric online services. They help users explore and exploit the system's information environment utilizing implicit and explicit data from internal e-commerce systems and user interactions. Today's product catalogues include pictures to provide visual detail at a glance. This approach can effectively convert potential buyers into customers. Since most e-commerce stores use product images to promote, arouse users' visual desires and encourage them to buy products, this paper develops an image-based RS using deep learning techniques. To perform the research, we use five convolutional neural network (CNN) models to extract the features of the products' images. Then, the system uses the features to calculate the similarity between images. The selected CNN models are VGG16, VGG19, ResNet50, Inception V3 and Xception. We also analysed four versions of the MovieLens dataset to demonstrate the accuracy improvement of the recommendations, including 100k, 1M, 10M and 20M. Results of the experiment showed a significant increase in accuracy compared with traditional approaches. Also, we express many related open issues including use of multiple images per item, different similarity metrics, other CNN models, and the hybridization of image-based and different RS techniques for future studies. This method also provides more accurate product recommendations on e-commerce platforms than traditional methods.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于卷积神经网络的电子商务应用图像产品推荐方法
推荐系统(RS)旨在消除当今电子商务平台和其他以数据为中心的在线服务中的信息过载问题。它们利用来自内部电子商务系统和用户交互的隐式和显式数据,帮助用户探索和利用系统的信息环境。今天的产品目录包括图片,以提供一目了然的视觉细节。这种方法可以有效地将潜在买家转化为客户。鉴于大多数电子商务商店都使用产品图像来宣传、唤起用户的视觉欲望并鼓励他们购买产品,本文利用深度学习技术开发了一种基于图像的RS。为了进行研究,我们使用了五个卷积神经网络(CNN)模型来提取产品图像的特征。然后,系统使用这些特征来计算图像之间的相似度。选择的CNN模型有VGG16、VGG19、ResNet50、Inception V3和Xception。我们还分析了MovieLens数据集的四个版本,以证明建议的准确性提高,包括100k、1M、10M和20M。实验结果表明,与传统方法相比,准确度显著提高。此外,我们表达了许多相关的开放性问题,包括每个项目使用多个图像、不同的相似性度量、其他CNN模型,以及基于图像和不同RS技术的混合,以供未来研究。这种方法也比传统方法在电子商务平台上提供了更准确的产品推荐。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Acta Informatica Pragensia
Acta Informatica Pragensia Social Sciences-Library and Information Sciences
CiteScore
1.70
自引率
0.00%
发文量
26
审稿时长
12 weeks
期刊最新文献
Evaluation of the I-Voting System for Remote Primary Elections of the Czech Pirate Party Investigating the Causes of Non-realization of Project Prediction and Proposal of a New Prediction Framework The Fairness Stitch: A Novel Approach for Neural Network Debiasing Blockchain-Powered Patient-Centric Access Control with MIDC AES-256 Encryption for Enhanced Healthcare Data Security Information Ethics in Light of Bibliometric Analyses: Discovering a Shift to Ethics of Artificial Intelligence
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1