Energy Balance of Briquette Production from Various Waste Biomass

Q3 Agricultural and Biological Sciences Scientia Agriculturae Bohemica Pub Date : 2018-09-01 DOI:10.2478/sab-2018-0030
A. Brunerová, M. Brožek, V. Šleger, A. Novakova
{"title":"Energy Balance of Briquette Production from Various Waste Biomass","authors":"A. Brunerová, M. Brožek, V. Šleger, A. Novakova","doi":"10.2478/sab-2018-0030","DOIUrl":null,"url":null,"abstract":"Abstract Production of briquette bio-fuel is related to several aspects of densification process. The present paper deals with the relation between briquette volume density ρ (kg·m−3) and required deformation energy Ed (J). Wood, energy crop and cardboard feedstocks were compressed by a laboratory briquetting press of two diameters (40 and 65 mm); in this way six kinds of briquette samples (W40, W65, E40, E65, C40, C65) were produced. The values of compressing force F (N) and briquette volume density ρ were measured directly during feedstock densification; the deformation energy Ed was calculated subsequently. The amount of deformation energy Ed consumed within the achievement of specific briquette volume density ρ levels differed in case of all samples, the same as the maximum achieved briquette volume density ρ levels. Best results, i.e. efficiency of briquette production (the highest ρ, the lowest Ed), were achieved by cardboard samples, followed by wood and finally by energy crop samples. An overall evaluation indicated a higher production efficiency of briquette samples 40 mm in diameter and the disadvantage of the production of briquette samples with briquette volume density ρ > 1000 kg·m−3; above such level, the amount of consumed deformation energy Ed increased disproportionately sharply.","PeriodicalId":53537,"journal":{"name":"Scientia Agriculturae Bohemica","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientia Agriculturae Bohemica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/sab-2018-0030","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 13

Abstract

Abstract Production of briquette bio-fuel is related to several aspects of densification process. The present paper deals with the relation between briquette volume density ρ (kg·m−3) and required deformation energy Ed (J). Wood, energy crop and cardboard feedstocks were compressed by a laboratory briquetting press of two diameters (40 and 65 mm); in this way six kinds of briquette samples (W40, W65, E40, E65, C40, C65) were produced. The values of compressing force F (N) and briquette volume density ρ were measured directly during feedstock densification; the deformation energy Ed was calculated subsequently. The amount of deformation energy Ed consumed within the achievement of specific briquette volume density ρ levels differed in case of all samples, the same as the maximum achieved briquette volume density ρ levels. Best results, i.e. efficiency of briquette production (the highest ρ, the lowest Ed), were achieved by cardboard samples, followed by wood and finally by energy crop samples. An overall evaluation indicated a higher production efficiency of briquette samples 40 mm in diameter and the disadvantage of the production of briquette samples with briquette volume density ρ > 1000 kg·m−3; above such level, the amount of consumed deformation energy Ed increased disproportionately sharply.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用各种废生物质生产型煤的能量平衡
摘要型煤生物燃料的生产与致密化过程的几个方面有关。本文研究了型煤体积密度ρ(kg·m−3)与所需变形能Ed(J)的关系。木材、能源作物和纸板原料由两种直径(40和65mm)的实验室压块机压缩;用这种方法制备了六种型煤样品(W40、W65、E40、E65、C40、C65)。在原料致密化过程中,直接测量了压缩力F(N)和型煤体积密度ρ的值;随后计算变形能量Ed。在所有样品的情况下,在实现特定型煤体积密度ρ水平的过程中消耗的变形能量Ed的量不同,与实现的最大型煤体积密度η水平相同。最佳结果,即型煤生产效率(最高的ρ,最低的Ed)是通过纸板样品获得的,其次是木材,最后是能源作物样品。综合评价表明,直径为40mm的型煤样品的生产效率较高,而体积密度ρ>1000kg·m−3的型煤样品生产存在不足;在该水平以上,消耗的变形能量Ed的量不成比例地急剧增加。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Scientia Agriculturae Bohemica
Scientia Agriculturae Bohemica Agricultural and Biological Sciences-Agricultural and Biological Sciences (all)
CiteScore
1.50
自引率
0.00%
发文量
0
审稿时长
40 weeks
期刊最新文献
Plant Extracts Inducing Enzyme Activity in Grains Against Loose Smut Disease Toxicity and Biochemical Effects of Cumin and Basil Essential Oils on Tribolium Castaneum In Vitro Assessment of N-Phenyl Imides in the Management of Meloidogyne Incognita Lacticaseibacilli and Lactococci from Slovak Raw Goat Milk and their Potential Response of Laying Hens to Aqueous Extracts of Petiveria alliacea Root and Leaf
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1