Polyelectrolyte Complex Coacervates: Recent Developments and New Frontiers

IF 14.3 1区 物理与天体物理 Q1 PHYSICS, CONDENSED MATTER Annual Review of Condensed Matter Physics Pub Date : 2021-03-10 DOI:10.1146/annurev-conmatphys-042020-113457
A. Rumyantsev, N. Jackson, J. Pablo
{"title":"Polyelectrolyte Complex Coacervates: Recent Developments and New Frontiers","authors":"A. Rumyantsev, N. Jackson, J. Pablo","doi":"10.1146/annurev-conmatphys-042020-113457","DOIUrl":null,"url":null,"abstract":"Polyelectrolyte complex coacervates represent a wide class of materials with applications ranging from coatings and adhesives to pharmaceutical technologies. They also underpin multiple biological processes, which are only now beginning to be deciphered. The means by which molecular-scale architecture propagates into macroscopic structure, thermodynamics, and dynamics in complex coacervates is of central concern in physics, chemistry, biology, and materials science. How does polyion charge sequence dictate thermodynamic behavior? How does one tailor rheology or interfacial tension using macromolecular architecture? What emergent functionality from polymer complex coacervates has biological consequences? Recent developments in coacervate science shed light on many of these issues and raise exciting new challenges for the close integration of theory, simulations, and experiment.","PeriodicalId":7925,"journal":{"name":"Annual Review of Condensed Matter Physics","volume":" ","pages":""},"PeriodicalIF":14.3000,"publicationDate":"2021-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1146/annurev-conmatphys-042020-113457","citationCount":"63","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual Review of Condensed Matter Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1146/annurev-conmatphys-042020-113457","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 63

Abstract

Polyelectrolyte complex coacervates represent a wide class of materials with applications ranging from coatings and adhesives to pharmaceutical technologies. They also underpin multiple biological processes, which are only now beginning to be deciphered. The means by which molecular-scale architecture propagates into macroscopic structure, thermodynamics, and dynamics in complex coacervates is of central concern in physics, chemistry, biology, and materials science. How does polyion charge sequence dictate thermodynamic behavior? How does one tailor rheology or interfacial tension using macromolecular architecture? What emergent functionality from polymer complex coacervates has biological consequences? Recent developments in coacervate science shed light on many of these issues and raise exciting new challenges for the close integration of theory, simulations, and experiment.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
聚电解质复合物凝聚体:最新进展和新领域
聚电解质复合凝聚层代表了一类广泛的材料,其应用范围从涂料、粘合剂到制药技术。它们还支撑着多种生物过程,而这些过程现在才刚刚开始被破译。分子尺度结构在复杂凝聚层中传播到宏观结构、热力学和动力学的方式是物理学、化学、生物学和材料科学的核心问题。聚离子电荷序列如何决定热力学行为?如何使用大分子结构调整流变学或界面张力?聚合物复合物凝聚层的哪些新兴功能具有生物学后果?凝聚科学的最新发展揭示了其中的许多问题,并为理论、模拟和实验的紧密结合提出了令人兴奋的新挑战。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Annual Review of Condensed Matter Physics
Annual Review of Condensed Matter Physics PHYSICS, CONDENSED MATTER-
CiteScore
47.40
自引率
0.90%
发文量
27
期刊介绍: Since its inception in 2010, the Annual Review of Condensed Matter Physics has been chronicling significant advancements in the field and its related subjects. By highlighting recent developments and offering critical evaluations, the journal actively contributes to the ongoing discourse in condensed matter physics. The latest volume of the journal has transitioned from gated access to open access, facilitated by Annual Reviews' Subscribe to Open initiative. Under this program, all articles are now published under a CC BY license, ensuring broader accessibility and dissemination of knowledge.
期刊最新文献
Activity Unmasks Chirality in Liquid-Crystalline Matter High-Order Van Hove Singularities and Their Connection to Flat Bands Emergent Simplicities in the Living Histories of Individual Cells Transverse Quantum Superfluids A Primer on Stochastic Partial Differential Equations with Spatially Correlated Noise
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1