{"title":"Forecast-corrected production-inventory control policy in unreliable manufacturing systems","authors":"Nan Li, F. Chan, S. Chung","doi":"10.1504/EJIE.2017.087677","DOIUrl":null,"url":null,"abstract":"In traditional research on production-inventory control problems with failure-prone manufacturing systems, a stationary demand process is an essential assumption. However, such a situation may not be true. This study extends the hedging-point-based production-inventory control problem into the case with non-stationary demand. The demand forecasting process is simulated and categorised into two different cases. First of all, a two-level control policy is proposed to solve the problem with a Markov modulated Poisson demand process which is often used in qualitative forecasting. Then the quantitative forecasting process using time series methods is modelled and a forecast-corrected control policy is proposed accordingly. The impact of forecasting on the system performance is then investigated. An integrated simulation and experimental design method was adopted to solve the modified optimal control problem. The results show that the proposed control policy can outperform the traditional stationary policy when the forecasting error is limited to a certain level. [Received 29 August 2014; Revised 13 July 2015; Revised 12 April 2016; Revised 20 September 2016; Revised 21 September 2016; Accepted 30 March 2017]","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2017-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1504/EJIE.2017.087677","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1504/EJIE.2017.087677","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
In traditional research on production-inventory control problems with failure-prone manufacturing systems, a stationary demand process is an essential assumption. However, such a situation may not be true. This study extends the hedging-point-based production-inventory control problem into the case with non-stationary demand. The demand forecasting process is simulated and categorised into two different cases. First of all, a two-level control policy is proposed to solve the problem with a Markov modulated Poisson demand process which is often used in qualitative forecasting. Then the quantitative forecasting process using time series methods is modelled and a forecast-corrected control policy is proposed accordingly. The impact of forecasting on the system performance is then investigated. An integrated simulation and experimental design method was adopted to solve the modified optimal control problem. The results show that the proposed control policy can outperform the traditional stationary policy when the forecasting error is limited to a certain level. [Received 29 August 2014; Revised 13 July 2015; Revised 12 April 2016; Revised 20 September 2016; Revised 21 September 2016; Accepted 30 March 2017]
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.