Modeling the Deformation of Shear Thinning Droplets Suspended in a Newtonian Fluid

IF 5.8 4区 工程技术 Q1 MECHANICS Applied Rheology Pub Date : 2020-01-01 DOI:10.1515/arh-2020-0113
Abdulwahab S. Almusallam, Isameldeen E. Daffallah, L. Benyahia
{"title":"Modeling the Deformation of Shear Thinning Droplets Suspended in a Newtonian Fluid","authors":"Abdulwahab S. Almusallam, Isameldeen E. Daffallah, L. Benyahia","doi":"10.1515/arh-2020-0113","DOIUrl":null,"url":null,"abstract":"Abstract In this work, we carried out numerical modeling of the large deformation of a shear thinning droplet suspended in a Newtonian matrix using the constrained volume model. The adopted approach was to consider making incremental corrections to the evolution of the droplet anisotropy equation in order to capture the experimental behavior of a shear thinning droplet when subjected to deformation due to imposed flow. The constrained volume model was modified by using different models to describe the viscosity of droplet phase: the Bautista et al. model, the Carreau-Yasuda model and the Power-law model. We found that by combining the constrained volume model with a simple shear thinning viscosity model we were able to describe the available experimental data for large deformation of a shear thinning droplet suspended in a Newtonian matrix. Moreover, we developed an equation approximating flow strength during droplet retraction, and we found that the model can accurately describe the experimental data of the retraction of a shear thinning droplet.","PeriodicalId":50738,"journal":{"name":"Applied Rheology","volume":"30 1","pages":"151 - 165"},"PeriodicalIF":5.8000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/arh-2020-0113","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Rheology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1515/arh-2020-0113","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 1

Abstract

Abstract In this work, we carried out numerical modeling of the large deformation of a shear thinning droplet suspended in a Newtonian matrix using the constrained volume model. The adopted approach was to consider making incremental corrections to the evolution of the droplet anisotropy equation in order to capture the experimental behavior of a shear thinning droplet when subjected to deformation due to imposed flow. The constrained volume model was modified by using different models to describe the viscosity of droplet phase: the Bautista et al. model, the Carreau-Yasuda model and the Power-law model. We found that by combining the constrained volume model with a simple shear thinning viscosity model we were able to describe the available experimental data for large deformation of a shear thinning droplet suspended in a Newtonian matrix. Moreover, we developed an equation approximating flow strength during droplet retraction, and we found that the model can accurately describe the experimental data of the retraction of a shear thinning droplet.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
牛顿流体中剪切减薄液滴的变形建模
摘要在这项工作中,我们使用约束体积模型对悬浮在牛顿矩阵中的剪切变薄液滴的大变形进行了数值模拟。所采用的方法是考虑对液滴各向异性方程的演变进行增量校正,以捕捉剪切减薄液滴在因施加的流动而变形时的实验行为。通过使用不同的模型来描述液滴相的粘度,对约束体积模型进行了修改:Bautista等人的模型、Carreau Yasuda模型和幂律模型。我们发现,通过将约束体积模型与简单的剪切减薄粘度模型相结合,我们能够描述悬浮在牛顿基质中的剪切减稀液滴的大变形的可用实验数据。此外,我们建立了一个近似液滴回缩过程中流动强度的方程,我们发现该模型可以准确地描述剪切减薄液滴回撤的实验数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Applied Rheology
Applied Rheology 物理-力学
CiteScore
3.00
自引率
5.60%
发文量
7
审稿时长
>12 weeks
期刊介绍: Applied Rheology is a peer-reviewed, open access, electronic journal devoted to the publication in the field of applied rheology. The journal provides the readers with free, instant, and permanent access to all content worldwide; and the authors with extensive promotion of published articles, long-time preservation, language-correction services, no space constraints and immediate publication.
期刊最新文献
Prediction of sensory textures of cosmetics using large amplitude oscillatory shear and extensional rheology Viscoplastic fluid flow in pipes: A rheological study using in-situ laser Doppler velocimetry Structural damage characteristics and mechanism of granite residual soil Rheological characteristics and seepage laws of sandstone specimens containing an inclined single fracture under three-dimensional stress Computational analysis of nanoparticles and waste discharge concentration past a rotating sphere with Lorentz forces
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1