首页 > 最新文献

Applied Rheology最新文献

英文 中文
Computational analysis of nanoparticles and waste discharge concentration past a rotating sphere with Lorentz forces 利用洛伦兹力计算分析经过旋转球体的纳米粒子和废物排放浓度
IF 1.8 4区 工程技术 Q1 MECHANICS Pub Date : 2024-08-06 DOI: 10.1515/arh-2024-0012
Pullare Nimmy, Adebowale Martins Obalalu, Kallur Venkat Nagaraja, Javali Kotresh Madhukesh, Umair Khan, Anuar Ishak, Devanathan Sriram, Syed Modassir Hussain, Raman Kumar, Ahmed M. Abed
As industries rely more and more on magnetohydrodynamic (MHD) systems for different uses in power, production, and management of the environment, it becomes essential to optimize these operations. The study seeks to improve the effectiveness and productivity of cooling structures, chemical reaction reactors, and contaminant control methods by investigating these intricate interconnections. Because of this, the work scrutinizes the endothermic/exothermic (EN/EX) chemical processes, convective boundary conditions, and pollutant concentration impacts on MHD nanofluid circulation around a rotating sphere. The governing equations based on the above assumptions are reduced into a system of ordinary differential equations and solved numerically with Runge–Kutta Fehlberg’s fourth- and fifth- order schemes. The obtained numerical outcomes from the numerical scheme are presented with the aid of graphs, and the results show that the rate of mass transfer decreases with an increase in the external pollutant local source and solid volume percentage. For changes in the values of the activation energy parameter and solid fraction, the rate of thermal dispersion drops for the EN case and upsurges for the EX case. The concentration profile shows increment with the addition of the external pollutant source variation parameter and local pollutant external source parameter. The outcomes of the present work can be helpful in cooling equipment, developing advanced methods for controlling pollution, environmental management, MHD generators, and various industrial contexts.
随着各行各业越来越依赖磁流体动力(MHD)系统在动力、生产和环境管理方面的不同用途,优化这些操作变得至关重要。这项研究旨在通过研究这些错综复杂的相互联系,提高冷却结构、化学反应反应堆和污染物控制方法的效率和生产力。因此,本研究仔细研究了内热/外热(EN/EX)化学过程、对流边界条件以及污染物浓度对围绕旋转球体的 MHD 纳米流体循环的影响。基于上述假设的控制方程被简化为常微分方程系统,并采用 Runge-Kutta Fehlberg 四阶和五阶方案进行数值求解。结果表明,随着外部污染物本地源和固体体积百分比的增加,传质速率降低。随着活化能参数值和固体分数的变化,EN 情况下的热扩散率下降,EX 情况下的热扩散率上升。随着外部污染源变化参数和本地污染源参数的增加,浓度曲线也随之增加。本研究成果可用于冷却设备、开发先进的污染控制方法、环境管理、MHD 发电机和各种工业环境。
{"title":"Computational analysis of nanoparticles and waste discharge concentration past a rotating sphere with Lorentz forces","authors":"Pullare Nimmy, Adebowale Martins Obalalu, Kallur Venkat Nagaraja, Javali Kotresh Madhukesh, Umair Khan, Anuar Ishak, Devanathan Sriram, Syed Modassir Hussain, Raman Kumar, Ahmed M. Abed","doi":"10.1515/arh-2024-0012","DOIUrl":"https://doi.org/10.1515/arh-2024-0012","url":null,"abstract":"As industries rely more and more on magnetohydrodynamic (MHD) systems for different uses in power, production, and management of the environment, it becomes essential to optimize these operations. The study seeks to improve the effectiveness and productivity of cooling structures, chemical reaction reactors, and contaminant control methods by investigating these intricate interconnections. Because of this, the work scrutinizes the endothermic/exothermic (EN/EX) chemical processes, convective boundary conditions, and pollutant concentration impacts on MHD nanofluid circulation around a rotating sphere. The governing equations based on the above assumptions are reduced into a system of ordinary differential equations and solved numerically with Runge–Kutta Fehlberg’s fourth- and fifth- order schemes. The obtained numerical outcomes from the numerical scheme are presented with the aid of graphs, and the results show that the rate of mass transfer decreases with an increase in the external pollutant local source and solid volume percentage. For changes in the values of the activation energy parameter and solid fraction, the rate of thermal dispersion drops for the EN case and upsurges for the EX case. The concentration profile shows increment with the addition of the external pollutant source variation parameter and local pollutant external source parameter. The outcomes of the present work can be helpful in cooling equipment, developing advanced methods for controlling pollution, environmental management, MHD generators, and various industrial contexts.","PeriodicalId":50738,"journal":{"name":"Applied Rheology","volume":null,"pages":null},"PeriodicalIF":1.8,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141968892","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Evolution characteristics of calcareous sand force chain based on particle breakage 基于颗粒破碎的钙质砂力链演变特征
IF 1.8 4区 工程技术 Q1 MECHANICS Pub Date : 2024-07-30 DOI: 10.1515/arh-2024-0009
Bin Chen, Junjie Xia, Yiwei Lu, Geping Zhang, Qinghua Liu, Jieming Hu, Zijian Han
Calcareous sand is easily broken under external force, which brings great difficulties to island reef engineering. Based on the particle flow program, a discrete element model that can reproduce the results of laboratory tests is established, the large principal stress method is introduced to identify the particle force chain, and the bond strength between particles is increased to obtain an unbreakable model with the same initial conditions, and different confining pressures are compared and analyzed. The evolution law of the force chain of the following two models establishes a macro-meso cross-scale analysis in the deformation process of calcareous sand, explores the internal mechanism of the crushing of calcareous sand particles. The results show that particle breakage plays an important role in the evolution of the force chain. Particle breakage will reduce the probability of the force chain on both sides of the axis, forcing the probability of the axial force chain to rise steadily. The macroscopic deviatoric stress is the external manifestation of the probability of the axial force chain on the meso level. The faster the probability of the force chain in the direction of the potential shear band increases, the more obvious the shear band is.
钙质砂在外力作用下容易破碎,给岛礁工程带来很大困难。在颗粒流动程序的基础上,建立了能再现实验室试验结果的离散元模型,引入大主应力法识别颗粒力链,提高颗粒间的结合强度,得到了相同初始条件下的不可破模型,并对不同的约束压力进行了对比分析。以下两个模型的力链演化规律建立了钙质砂变形过程中的宏观-中观跨尺度分析,探索了钙质砂颗粒破碎的内在机理。结果表明,颗粒破碎在力链的演化过程中起着重要作用。颗粒破碎会降低轴两侧力链的概率,迫使轴向力链的概率稳步上升。宏观偏差应力是轴向力链概率在中观层面的外在表现。潜在剪切带方向上的力链概率增加得越快,剪切带就越明显。
{"title":"Evolution characteristics of calcareous sand force chain based on particle breakage","authors":"Bin Chen, Junjie Xia, Yiwei Lu, Geping Zhang, Qinghua Liu, Jieming Hu, Zijian Han","doi":"10.1515/arh-2024-0009","DOIUrl":"https://doi.org/10.1515/arh-2024-0009","url":null,"abstract":"Calcareous sand is easily broken under external force, which brings great difficulties to island reef engineering. Based on the particle flow program, a discrete element model that can reproduce the results of laboratory tests is established, the large principal stress method is introduced to identify the particle force chain, and the bond strength between particles is increased to obtain an unbreakable model with the same initial conditions, and different confining pressures are compared and analyzed. The evolution law of the force chain of the following two models establishes a macro-meso cross-scale analysis in the deformation process of calcareous sand, explores the internal mechanism of the crushing of calcareous sand particles. The results show that particle breakage plays an important role in the evolution of the force chain. Particle breakage will reduce the probability of the force chain on both sides of the axis, forcing the probability of the axial force chain to rise steadily. The macroscopic deviatoric stress is the external manifestation of the probability of the axial force chain on the meso level. The faster the probability of the force chain in the direction of the potential shear band increases, the more obvious the shear band is.","PeriodicalId":50738,"journal":{"name":"Applied Rheology","volume":null,"pages":null},"PeriodicalIF":1.8,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141865978","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Investigation and numerical simulation study on the vertical bearing mechanism of large-diameter overlength piles in water-enriched soft soil areas 富水软土地区大直径超长桩竖向承载力机理调查与数值模拟研究
IF 1.8 4区 工程技术 Q1 MECHANICS Pub Date : 2024-07-08 DOI: 10.1515/arh-2024-0008
Huayan Liang, Zhi Wang, Biao Zhao, Yan Xu, Zheng Li, Xuanming Ding
With the development of urbanization, there is an increasing demand for higher land utilization rates, leading to the emergence of high-rise residential and commercial complexes. Additionally, in coastal areas, the presence of soft soil and low bearing capacity of the foundation necessitate higher foundation bearing capacity. Large-diameter, super-long piles have been widely employed in engineering projects to address these challenges effectively. This study analyzes their vertical bearing characteristics through field load tests and determines vertical load distribution and transfer mechanisms by using Brillouin Optical Time Domain Reflectometry. A numerical computation and analysis method based on PLAXIS 3D was established, examining the effects of parameters such as pile diameter, length, and soil modulus on the vertical bearing characteristics. Results indicate that large-diameter, super-long piles mainly bear loads through side friction, with the tip bearing less load. As load levels increase, axial force increases linearly above 40 m depth and becomes nonlinear below. Frictional resistance is significant below 40 m at 3,700 kN load. Parameter analysis shows that increasing pile length and diameter enhances bearing capacity, suggesting this method to improve pile foundation capacity in engineering.
随着城市化的发展,对土地利用率的要求越来越高,导致高层住宅和商业综合体的出现。此外,沿海地区土质松软,地基承载力低,因此需要提高地基承载力。大直径、超长桩已被广泛应用于工程项目中,以有效解决这些难题。本研究通过现场荷载试验分析其垂直承载特性,并利用布里渊光学时域反射仪确定垂直荷载分布和传递机制。建立了基于 PLAXIS 3D 的数值计算和分析方法,研究了桩直径、长度和土模量等参数对垂直承载特性的影响。结果表明,大直径、超长桩主要通过侧向摩擦承受荷载,桩尖承受的荷载较小。随着荷载水平的增加,轴向力在 40 米深度以上呈线性增加,在 40 米深度以下则呈非线性增加。在 3,700 千牛的荷载作用下,40 米以下的摩擦阻力很大。参数分析表明,增加桩长和直径可提高承载力,建议在工程中采用这种方法来提高桩基承载力。
{"title":"Investigation and numerical simulation study on the vertical bearing mechanism of large-diameter overlength piles in water-enriched soft soil areas","authors":"Huayan Liang, Zhi Wang, Biao Zhao, Yan Xu, Zheng Li, Xuanming Ding","doi":"10.1515/arh-2024-0008","DOIUrl":"https://doi.org/10.1515/arh-2024-0008","url":null,"abstract":"With the development of urbanization, there is an increasing demand for higher land utilization rates, leading to the emergence of high-rise residential and commercial complexes. Additionally, in coastal areas, the presence of soft soil and low bearing capacity of the foundation necessitate higher foundation bearing capacity. Large-diameter, super-long piles have been widely employed in engineering projects to address these challenges effectively. This study analyzes their vertical bearing characteristics through field load tests and determines vertical load distribution and transfer mechanisms by using Brillouin Optical Time Domain Reflectometry. A numerical computation and analysis method based on PLAXIS 3D was established, examining the effects of parameters such as pile diameter, length, and soil modulus on the vertical bearing characteristics. Results indicate that large-diameter, super-long piles mainly bear loads through side friction, with the tip bearing less load. As load levels increase, axial force increases linearly above 40 m depth and becomes nonlinear below. Frictional resistance is significant below 40 m at 3,700 kN load. Parameter analysis shows that increasing pile length and diameter enhances bearing capacity, suggesting this method to improve pile foundation capacity in engineering.","PeriodicalId":50738,"journal":{"name":"Applied Rheology","volume":null,"pages":null},"PeriodicalIF":1.8,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141569110","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Ramification of Hall effects in a non-Newtonian model past an inclined microchannel with slip and convective boundary conditions 非牛顿模型中霍尔效应在倾斜微通道滑移和对流边界条件下的夯实作用
IF 1.8 4区 工程技术 Q1 MECHANICS Pub Date : 2024-07-08 DOI: 10.1515/arh-2024-0010
Ajjanna Roja, Rania Saadeh, Raman Kumar, Ahmad Qazza, Umair Khan, Anuar Ishak, El-Sayed M. Sherif, Ioan Pop
Many applications, including micro air vehicles, automotive, aerospace, refrigeration, mechanical–electromechanical systems, electronic device cooling, and micro heat exchanger systems, can be used to determine the heat flow in microchannels. Regarding engineering applications, heat flow optimization discusses the role of entropy production minimization. Therefore, this work explores new facets of entropy production in fully developed Carreau fluid heat transport in an inclined microchannel considering exponential space/temperature dependence, radiative heat flux, and Joule heating. The Carreau fluid model’s rheological properties are taken into account. Additionally, the influence of Hall slip velocity and convective boundary conditions is considered. Using appropriate transformation constraints, the governing equations are transformed into a system of ordinary differential equations, which are then numerically solved using the fourth- and fifth-order Runge–Kutta–Fehlberg method. Graphs illustrate a significant discussion of physical parameters on production of entropy, Bejan number, thermal field, and velocity. Our findings established that there is a dual impact of entropy generation for the exponential space/temperature-dependent, radiation parameter, Hall parameter, Weissenberg number, and velocity slip parameter. The Bejan number decreased with the Hall current and the Weissenberg number, and it enhanced with exponential space/temperature dependent. The convection constraint maximizes the entropy at the channel walls. The results are compared with exact solutions, which show excellent agreement.
许多应用,包括微型飞行器、汽车、航空航天、制冷、机械机电系统、电子设备冷却和微型热交换器系统,都可用于确定微通道中的热流。在工程应用方面,热流优化讨论了熵产生最小化的作用。因此,考虑到指数空间/温度相关性、辐射热通量和焦耳加热,本研究探索了在倾斜微通道中充分发展的卡若流体热传输中熵产生的新方面。Carreau 流体模型的流变特性也考虑在内。此外,还考虑了霍尔滑移速度和对流边界条件的影响。利用适当的转换约束条件,将控制方程转换成常微分方程系统,然后使用四阶和五阶 Runge-Kutta-Fehlberg 方法对其进行数值求解。图表说明了物理参数对熵的产生、贝扬数、热场和速度的重要影响。我们的研究结果表明,熵的产生与指数空间/温度、辐射参数、霍尔参数、魏森伯格数和速度滑移参数有双重影响。贝扬数随霍尔电流和韦森伯格数的增大而减小,随指数空间/温度相关性的增大而增大。对流约束使通道壁的熵最大化。研究结果与精确解进行了比较,两者显示出极好的一致性。
{"title":"Ramification of Hall effects in a non-Newtonian model past an inclined microchannel with slip and convective boundary conditions","authors":"Ajjanna Roja, Rania Saadeh, Raman Kumar, Ahmad Qazza, Umair Khan, Anuar Ishak, El-Sayed M. Sherif, Ioan Pop","doi":"10.1515/arh-2024-0010","DOIUrl":"https://doi.org/10.1515/arh-2024-0010","url":null,"abstract":"Many applications, including micro air vehicles, automotive, aerospace, refrigeration, mechanical–electromechanical systems, electronic device cooling, and micro heat exchanger systems, can be used to determine the heat flow in microchannels. Regarding engineering applications, heat flow optimization discusses the role of entropy production minimization. Therefore, this work explores new facets of entropy production in fully developed Carreau fluid heat transport in an inclined microchannel considering exponential space/temperature dependence, radiative heat flux, and Joule heating. The Carreau fluid model’s rheological properties are taken into account. Additionally, the influence of Hall slip velocity and convective boundary conditions is considered. Using appropriate transformation constraints, the governing equations are transformed into a system of ordinary differential equations, which are then numerically solved using the fourth- and fifth-order Runge–Kutta–Fehlberg method. Graphs illustrate a significant discussion of physical parameters on production of entropy, Bejan number, thermal field, and velocity. Our findings established that there is a dual impact of entropy generation for the exponential space/temperature-dependent, radiation parameter, Hall parameter, Weissenberg number, and velocity slip parameter. The Bejan number decreased with the Hall current and the Weissenberg number, and it enhanced with exponential space/temperature dependent. The convection constraint maximizes the entropy at the channel walls. The results are compared with exact solutions, which show excellent agreement.","PeriodicalId":50738,"journal":{"name":"Applied Rheology","volume":null,"pages":null},"PeriodicalIF":1.8,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141569111","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cubic autocatalysis implementation in blood for non-Newtonian tetra hybrid nanofluid model through bounded artery 非牛顿四元混合纳米流体模型通过有界动脉在血液中实现立方自催化作用
IF 1.8 4区 工程技术 Q3 Physics and Astronomy Pub Date : 2024-05-28 DOI: 10.1515/arh-2024-0007
Wael Al-Kouz, Wahib Owhaib, Basma Souayeh, Montasir Hader, Raad Z. Homod
Tetra hybrid nanofluids are significant due to their unique properties like thermal and electrical conductivity enhancement, increased heat transfer, and improved fluid flow characteristics. This attempt proposes a tetra hybrid cross nanofluid model with the implementation of cubic autocatalysis in the context of blood flow passing through a stenosis artery. The model includes the effects of nanofluid, magnetic field, thermal radiation, and the cubic autocatalysis mechanism. This research investigates the innovative application of cubic autocatalysis within the context of blood flow through a tetra hybrid cross nanofluid model, specifically designed to simulate conditions within a stenosis horizontal artery. The equations governing the fluid flow are solved using the bvp5c method, and the numerical solutions are obtained for various parameter values. Specifically, the cubic autocatalysis mechanism profoundly impacts the velocity and concentration profiles of the blood flow. The proposed model and the obtained results provide new insights into the physics of blood flow passing through stenosis arteries. They may have important implications for the diagnosis and treatment of cardiovascular diseases. This article has a unique combination of tetra hybrid cross nanofluid model, cubic autocatalysis, and blood flow passing through the stenosis artery. These facts are not typically studied together in the context of blood flow.
四元杂交纳米流体具有独特的性能,如导热性和导电性增强、传热性提高和流体流动特性改善等,因此意义重大。本论文以血流通过狭窄动脉为背景,提出了一种四元混合交叉纳米流体模型,并实施了立方自催化。该模型包括纳米流体、磁场、热辐射和立方自催化机制的影响。这项研究通过四元混合交叉纳米流体模型,研究了立方自催化在血流中的创新应用,该模型专门用于模拟狭窄水平动脉内的情况。使用 bvp5c 方法求解了流体流动方程,并获得了各种参数值的数值解。具体而言,立方体自催化机制对血流的速度和浓度剖面产生了深远影响。所提出的模型和得到的结果为研究血流通过狭窄动脉的物理现象提供了新的视角。它们可能对心血管疾病的诊断和治疗具有重要意义。本文将四元杂交纳米流体模型、立方自催化和通过狭窄动脉的血流独特地结合在一起。在血流方面,这些事实通常不会一起研究。
{"title":"Cubic autocatalysis implementation in blood for non-Newtonian tetra hybrid nanofluid model through bounded artery","authors":"Wael Al-Kouz, Wahib Owhaib, Basma Souayeh, Montasir Hader, Raad Z. Homod","doi":"10.1515/arh-2024-0007","DOIUrl":"https://doi.org/10.1515/arh-2024-0007","url":null,"abstract":"Tetra hybrid nanofluids are significant due to their unique properties like thermal and electrical conductivity enhancement, increased heat transfer, and improved fluid flow characteristics. This attempt proposes a tetra hybrid cross nanofluid model with the implementation of cubic autocatalysis in the context of blood flow passing through a stenosis artery. The model includes the effects of nanofluid, magnetic field, thermal radiation, and the cubic autocatalysis mechanism. This research investigates the innovative application of cubic autocatalysis within the context of blood flow through a tetra hybrid cross nanofluid model, specifically designed to simulate conditions within a stenosis horizontal artery. The equations governing the fluid flow are solved using the bvp5c method, and the numerical solutions are obtained for various parameter values. Specifically, the cubic autocatalysis mechanism profoundly impacts the velocity and concentration profiles of the blood flow. The proposed model and the obtained results provide new insights into the physics of blood flow passing through stenosis arteries. They may have important implications for the diagnosis and treatment of cardiovascular diseases. This article has a unique combination of tetra hybrid cross nanofluid model, cubic autocatalysis, and blood flow passing through the stenosis artery. These facts are not typically studied together in the context of blood flow.","PeriodicalId":50738,"journal":{"name":"Applied Rheology","volume":null,"pages":null},"PeriodicalIF":1.8,"publicationDate":"2024-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141165654","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Assessment of heat transfer capabilities of some known nanofluids under turbulent flow conditions in a five-turn spiral pipe flow 评估一些已知纳米流体在五匝螺旋管流中紊流条件下的传热能力
IF 1.8 4区 工程技术 Q3 Physics and Astronomy Pub Date : 2024-05-23 DOI: 10.1515/arh-2024-0002
Merdin Danışmaz, Mesut Demirbilek
In this study, the thermo-flow behaviours of the spiral tube were examined using water and some nanofluids such as TiO2, Al2O3, Fe2O3, CuO, ZnO, and CeO2. The computational flow dynamic modelling of the spiral coiled tube was performed with ANSYS 20 software program. The kε model with a standard wall function was used to simulate the thermo-flow characteristics. The solution of the governing equations was performed using the discretization method of finite volume. The study was carried out considering the case of fluid-to-fluid heat transfer in turbulent conditions. The influence of different key design parameters such as Reynolds number, different nanofluids, and flow arrangements was of main interest. The volume concentration of the nanofluids is 1%. The experiments were performed at different Reynolds ranges (9,000, 14,000, 20,000, and 25,000). The outlet temperature values, heat transfer coefficient, coefficient of friction, Nusselt number values of water, and nanofluids were found and compared. It was found that the outlet temperature, heat transfer coefficient, and Nusselt number values of water were the lowest, while the coefficient of friction value was the highest compared to the nanofluids. Among the nanofluids, CeO was found to have the highest outlet temperature, heat transfer coefficient, and Nusselt number value, as well as the lowest coefficient of friction value. TiO2 was found to have the lowest outlet temperature (T out), the heat transfer coefficient value, and the highest coefficient of friction value. Al2O3 was found to have the lowest Nusselt number. In addition, Nusselt number values were obtained at different Dean numbers of water (2,200, 3,400, 4,900, 6,100, 7,350, and 8,600) and found to be compatible with previous studies. In addition, the coefficients of friction values of water at different velocities (0.18, 0.24, 0.41, 0.71, 0.95, 1.07, and 1.18) were obtained and found to be compatible with previous studies.
本研究使用水和一些纳米流体(如 TiO2、Al2O3、Fe2O3、CuO、ZnO 和 CeO2)对螺旋管的热流行为进行了研究。使用 ANSYS 20 软件程序对螺旋盘管进行了计算流体动力学建模。使用具有标准壁面函数的 k-ε 模型模拟热流特性。采用有限体积离散法求解控制方程。研究考虑了湍流条件下流体对流体的传热情况。雷诺数、不同的纳米流体和流场布置等不同关键设计参数的影响是研究的重点。纳米流体的体积浓度为 1%。实验在不同的雷诺范围(9,000、14,000、20,000 和 25,000)下进行。发现并比较了水和纳米流体的出口温度值、传热系数、摩擦系数、努塞尔特数值。结果发现,与纳米流体相比,水的出口温度、传热系数和努塞尔特数值最低,而摩擦系数值最高。在纳米流体中,CeO 的出口温度、传热系数和努塞尔特数值最高,摩擦系数值最低。发现 TiO2 的出口温度(T out)、传热系数值和摩擦系数值最低。Al2O3 的努塞尔特数最低。此外,在水的不同迪安数(2,200、3,400、4,900、6,100、7,350 和 8,600)下获得的努塞尔特数值与之前的研究结果一致。此外,还获得了不同速度下水的摩擦系数值(0.18、0.24、0.41、0.71、0.95、1.07 和 1.18),结果与之前的研究一致。
{"title":"Assessment of heat transfer capabilities of some known nanofluids under turbulent flow conditions in a five-turn spiral pipe flow","authors":"Merdin Danışmaz, Mesut Demirbilek","doi":"10.1515/arh-2024-0002","DOIUrl":"https://doi.org/10.1515/arh-2024-0002","url":null,"abstract":"In this study, the thermo-flow behaviours of the spiral tube were examined using water and some nanofluids such as TiO<jats:sub>2</jats:sub>, Al<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub>, Fe<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub>, CuO, ZnO, and CeO<jats:sub>2</jats:sub>. The computational flow dynamic modelling of the spiral coiled tube was performed with ANSYS 20 software program. The <jats:italic>k</jats:italic>–<jats:italic>ε</jats:italic> model with a standard wall function was used to simulate the thermo-flow characteristics. The solution of the governing equations was performed using the discretization method of finite volume. The study was carried out considering the case of fluid-to-fluid heat transfer in turbulent conditions. The influence of different key design parameters such as Reynolds number, different nanofluids, and flow arrangements was of main interest. The volume concentration of the nanofluids is 1%. The experiments were performed at different Reynolds ranges (9,000, 14,000, 20,000, and 25,000). The outlet temperature values, heat transfer coefficient, coefficient of friction, Nusselt number values of water, and nanofluids were found and compared. It was found that the outlet temperature, heat transfer coefficient, and Nusselt number values of water were the lowest, while the coefficient of friction value was the highest compared to the nanofluids. Among the nanofluids, CeO was found to have the highest outlet temperature, heat transfer coefficient, and Nusselt number value, as well as the lowest coefficient of friction value. TiO<jats:sub>2</jats:sub> was found to have the lowest outlet temperature (<jats:italic>T</jats:italic> <jats:sub>out</jats:sub>), the heat transfer coefficient value, and the highest coefficient of friction value. Al<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub> was found to have the lowest Nusselt number. In addition, Nusselt number values were obtained at different Dean numbers of water (2,200, 3,400, 4,900, 6,100, 7,350, and 8,600) and found to be compatible with previous studies. In addition, the coefficients of friction values of water at different velocities (0.18, 0.24, 0.41, 0.71, 0.95, 1.07, and 1.18) were obtained and found to be compatible with previous studies.","PeriodicalId":50738,"journal":{"name":"Applied Rheology","volume":null,"pages":null},"PeriodicalIF":1.8,"publicationDate":"2024-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141146905","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Two-dimensional rheo-optical measurement system to study dynamics and structure of complex fluids 用于研究复杂流体动力学和结构的二维流变光学测量系统
IF 1.8 4区 工程技术 Q3 Physics and Astronomy Pub Date : 2024-05-10 DOI: 10.1515/arh-2024-0006
Taisuke Sato, Yoshifumi Yamagata, Yasunori Sato, Takashi Onuma, Keisuke Miyamoto, Tsutomu Takahashi
We have developed a novel rheo-optical measurement system based on two-dimensional polarization analysis, which can evaluate the rheological properties and structure of a complex fluid simultaneously. To assess the utility of the system, we used it to investigate the relationship between yield behavior and structural evolution in a TEMPO-oxidized cellulose nanofiber (T-CNF) suspension, which is a yield-stress fluid that has been actively studied in recent years. To analyze the structural evolution of a T-CNF suspension, stress-ramp tests were conducted. A two-step yield behavior was observed, and distributions of retardation and orientation axis varied dramatically with increasing shear stress. In particular, different distributions were observed in the three regions: after the first yield point, before the second yield point, and after the second yield point. In experiments with a low-concentration T-CNF suspension that exhibits no yield behavior, the retardation increased monotonically with increasing shear stress, and its distribution was uniform. It was demonstrated that the yield behavior and related structures can be analyzed from these results. More detailed structural mechanisms require various rheological tests using the developed system. However, the present insights demonstrate the valuable information provided by the developed rheo-optical measurement system, contributing essential knowledge for applications in various fields.
我们开发了一种基于二维偏振分析的新型流变光学测量系统,可以同时评估复杂流体的流变特性和结构。为了评估该系统的实用性,我们用它来研究 TEMPO 氧化纤维素纳米纤维(T-CNF)悬浮液中屈服行为与结构演变之间的关系。为了分析 T-CNF 悬浮液的结构演变,我们进行了应力斜坡试验。试验观察到了两步屈服行为,随着剪切应力的增加,延迟和取向轴的分布也发生了显著变化。特别是在三个区域观察到了不同的分布:第一个屈服点之后、第二个屈服点之前和第二个屈服点之后。在使用低浓度 T-CNF 悬浮液进行的实验中,该悬浮液没有屈服行为,其延迟率随剪切应力的增加而单调增加,且分布均匀。实验证明,可以从这些结果中分析屈服行为和相关结构。更详细的结构机制需要使用所开发的系统进行各种流变测试。不过,目前的研究结果表明,所开发的流变光学测量系统提供了宝贵的信息,为各个领域的应用提供了必要的知识。
{"title":"Two-dimensional rheo-optical measurement system to study dynamics and structure of complex fluids","authors":"Taisuke Sato, Yoshifumi Yamagata, Yasunori Sato, Takashi Onuma, Keisuke Miyamoto, Tsutomu Takahashi","doi":"10.1515/arh-2024-0006","DOIUrl":"https://doi.org/10.1515/arh-2024-0006","url":null,"abstract":"We have developed a novel rheo-optical measurement system based on two-dimensional polarization analysis, which can evaluate the rheological properties and structure of a complex fluid simultaneously. To assess the utility of the system, we used it to investigate the relationship between yield behavior and structural evolution in a TEMPO-oxidized cellulose nanofiber (T-CNF) suspension, which is a yield-stress fluid that has been actively studied in recent years. To analyze the structural evolution of a T-CNF suspension, stress-ramp tests were conducted. A two-step yield behavior was observed, and distributions of retardation and orientation axis varied dramatically with increasing shear stress. In particular, different distributions were observed in the three regions: after the first yield point, before the second yield point, and after the second yield point. In experiments with a low-concentration T-CNF suspension that exhibits no yield behavior, the retardation increased monotonically with increasing shear stress, and its distribution was uniform. It was demonstrated that the yield behavior and related structures can be analyzed from these results. More detailed structural mechanisms require various rheological tests using the developed system. However, the present insights demonstrate the valuable information provided by the developed rheo-optical measurement system, contributing essential knowledge for applications in various fields.","PeriodicalId":50738,"journal":{"name":"Applied Rheology","volume":null,"pages":null},"PeriodicalIF":1.8,"publicationDate":"2024-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140939770","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Shale hydraulic fracture morphology and inter-well interference rule under multi-wellbore test 多井眼试验下的页岩水力压裂形态和井间干扰规律
IF 1.8 4区 工程技术 Q3 Physics and Astronomy Pub Date : 2024-04-25 DOI: 10.1515/arh-2024-0005
Yulin Ma, Yupeng Du, Dandan Lu
This study conducted a series of true triaxial hydraulic fracturing experiments on Longmaxi Formation shale. We investigated the interaction between internal factors and external factors on the inter-well interference of 400 mm cubic porous specimens. During dual wellbore fracturing at different formations, forming inter-well interference through secondary hydraulic fractures lead to a lower interference intensity and larger stimulated rock area. When adopting a three-layer well layout during three-wellbore fracturing, the vertical distance between the wells is shortened, activating more bedding planes. Regardless of a horizontal well placement with two wellbores or a three-dimensional two-layer well placement with three wellbores, increasing the vertical stress leads to more potent inter-well interference. There is no absolute positive correlation between the stimulated rock area and inter-well interference. It can be influenced by the presence of natural fractures within the formation that can even lead to a reduction in the stimulated area. When the well placement changes from two horizontal wellbores to three-dimensional two-layer sites with three wellbores and the vertical stress increases, the inter-well interference becomes stronger, but the stimulated rock area only increases by 22.6%. These findings provide crucial guidance for the hydraulic fracturing design of shale reservoirs.
本研究对龙马溪地层页岩进行了一系列真三轴水力压裂实验。我们研究了内部因素和外部因素对 400 毫米立方多孔试样井间干涉的相互作用。在不同地层的双井筒压裂过程中,通过次生水力裂缝形成的井间干涉会导致较低的干涉强度和较大的激发岩石面积。在三井筒压裂过程中采用三层井布局时,井间垂直距离缩短,可激活更多的层理。无论是两口井筒的水平井布局,还是三口井筒的三维两层井布局,垂直应力的增加都会导致更强的井间干扰。受刺激岩石面积与井间干扰之间没有绝对的正相关关系。地层中存在的天然裂缝会对其产生影响,甚至会导致受刺激面积减小。当油井布置从两口水平井井筒变为三口井井筒的三维两层井场且垂直应力增加时,井间干扰会变得更强,但受激岩石面积仅增加 22.6%。这些发现为页岩储层的水力压裂设计提供了重要指导。
{"title":"Shale hydraulic fracture morphology and inter-well interference rule under multi-wellbore test","authors":"Yulin Ma, Yupeng Du, Dandan Lu","doi":"10.1515/arh-2024-0005","DOIUrl":"https://doi.org/10.1515/arh-2024-0005","url":null,"abstract":"This study conducted a series of true triaxial hydraulic fracturing experiments on Longmaxi Formation shale. We investigated the interaction between internal factors and external factors on the inter-well interference of 400 mm cubic porous specimens. During dual wellbore fracturing at different formations, forming inter-well interference through secondary hydraulic fractures lead to a lower interference intensity and larger stimulated rock area. When adopting a three-layer well layout during three-wellbore fracturing, the vertical distance between the wells is shortened, activating more bedding planes. Regardless of a horizontal well placement with two wellbores or a three-dimensional two-layer well placement with three wellbores, increasing the vertical stress leads to more potent inter-well interference. There is no absolute positive correlation between the stimulated rock area and inter-well interference. It can be influenced by the presence of natural fractures within the formation that can even lead to a reduction in the stimulated area. When the well placement changes from two horizontal wellbores to three-dimensional two-layer sites with three wellbores and the vertical stress increases, the inter-well interference becomes stronger, but the stimulated rock area only increases by 22.6%. These findings provide crucial guidance for the hydraulic fracturing design of shale reservoirs.","PeriodicalId":50738,"journal":{"name":"Applied Rheology","volume":null,"pages":null},"PeriodicalIF":1.8,"publicationDate":"2024-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140800033","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Viscosity model based on Giesekus equation 基于吉塞克斯方程的粘度模型
IF 1.8 4区 工程技术 Q3 Physics and Astronomy Pub Date : 2024-04-23 DOI: 10.1515/arh-2024-0004
Sun Kyoung Kim
This work presents a viscosity model based on the Giesekus equation. The model is shown to be more flexible than the Cross and Carreau models in representing the shear-thinning behavior of viscoelastic fluids. It has been investigated that the influence of the model parameters on the viscosity showed that the mobility parameter α plays a distinctive role in adjusting the inflection shape of the viscosity curve. The results show that the new model is able to accurately capture the shear-thinning behavior of polystyrene data, while the Cross and Carreau models tend to underestimate and overestimate the viscosity at the inflection point, respectively. It has been also shown that the Yasuda-type modification is also applicable to the proposed model. Moreover, the viscosity model has been applied to simultaneously fitting a polymeric liquid system and a particulate slurry system. The new viscosity model is a promising tool for modeling the shear-thinning behavior of viscoelastic fluids in a wide range of applications.
这项研究提出了一种基于 Giesekus 方程的粘度模型。与 Cross 和 Carreau 模型相比,该模型在表示粘弹性流体的剪切稀化行为时更加灵活。研究表明,模型参数对粘度的影响表明,流动参数 α 在调整粘度曲线拐点形状方面起着独特的作用。结果表明,新模型能够准确捕捉聚苯乙烯数据的剪切稀化行为,而 Cross 和 Carreau 模型则分别倾向于低估和高估拐点处的粘度。研究还表明,Yasuda 型修正也适用于所提出的模型。此外,该粘度模型还被应用于同时拟合聚合物液体体系和颗粒浆料体系。新的粘度模型是一种很有前途的工具,可用于模拟粘弹性流体在广泛应用中的剪切稀化行为。
{"title":"Viscosity model based on Giesekus equation","authors":"Sun Kyoung Kim","doi":"10.1515/arh-2024-0004","DOIUrl":"https://doi.org/10.1515/arh-2024-0004","url":null,"abstract":"This work presents a viscosity model based on the Giesekus equation. The model is shown to be more flexible than the Cross and Carreau models in representing the shear-thinning behavior of viscoelastic fluids. It has been investigated that the influence of the model parameters on the viscosity showed that the mobility parameter <jats:italic>α</jats:italic> plays a distinctive role in adjusting the inflection shape of the viscosity curve. The results show that the new model is able to accurately capture the shear-thinning behavior of polystyrene data, while the Cross and Carreau models tend to underestimate and overestimate the viscosity at the inflection point, respectively. It has been also shown that the Yasuda-type modification is also applicable to the proposed model. Moreover, the viscosity model has been applied to simultaneously fitting a polymeric liquid system and a particulate slurry system. The new viscosity model is a promising tool for modeling the shear-thinning behavior of viscoelastic fluids in a wide range of applications.","PeriodicalId":50738,"journal":{"name":"Applied Rheology","volume":null,"pages":null},"PeriodicalIF":1.8,"publicationDate":"2024-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140799993","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Study on the evolution of permeability properties of limestone under different stress paths 不同应力路径下石灰岩渗透特性演变研究
IF 1.8 4区 工程技术 Q3 Physics and Astronomy Pub Date : 2024-04-05 DOI: 10.1515/arh-2024-0003
Gang Huang, Gang Lu, Ji Zhang, Fengjun Zhou, Dongwei Li
Stress path change has a great relationship with the effect of deformation and strength of rock. However, the underground rock body is in the engineering environment where the stress field, seepage field, and other fields are coupled to change, the law of fluid flow in the rock body is complex and variable. The change in the stress field has an important effect on the seepage characteristics of rock body; therefore, it is necessary to study the pattern of rock permeability evolution pattern by different stress paths. This study is based on the study of limestone, conducting triaxial unloading seepage mechanics experiments, the evolution of permeability properties of limestone specimens was analyzed based on the test results. The results show that in the conventional triaxial loading seepage test, the permeability of the limestone decreases before the rock stress reaches the peak intensity and increases after that. Increasing axial pressure unloading surrounding pressure compression section, permeability loss rate and effective stress are in line with the changing law of Gaussian distribution function. Under the action of constant axial pressure unloading surrounding pressure, with the increase in unloading amount, the permeability rate of change appears to increase slowly, and in the late stage of unloading section, the permeability rate of change appears to surge. Unloading section permeability change rate and cumulative unloading amount are in line with the law of change of the exponential function. Creep unloading pressure seepage test found that unloading pressure stage strain-time and permeability-time evolution characteristics are in line with the exponential rule of change. The experimental results of this study can provide an important experimental and theoretical basis for the permeability analysis of low-permeability rock body under complex stress conditions in underground engineering.
应力路径的变化与岩石变形和强度的影响有很大关系。但地下岩体处于应力场、渗流场等耦合变化的工程环境中,岩体中流体流动规律复杂多变。应力场的变化对岩体的渗流特性有重要影响,因此有必要研究不同应力路径下岩体渗透率的演化规律。本研究以石灰岩为研究对象,进行了三轴卸荷渗流力学试验,根据试验结果分析了石灰岩试件渗透性的演变规律。结果表明,在常规三轴加载渗流试验中,石灰岩的渗透率在岩石应力达到峰值强度之前降低,之后升高。增加轴向压力卸载周围压力压缩段,渗透率损失率和有效应力符合高斯分布函数的变化规律。在恒定轴压卸荷围压作用下,随着卸荷量的增加,渗透率变化率呈缓慢上升趋势,在卸荷段后期,渗透率变化率呈猛增趋势。卸载段渗透率变化率和累积卸载量符合指数函数的变化规律。蠕变卸荷压力渗流试验发现,卸荷压力阶段应变-时间和渗透率-时间演化特征均符合指数函数变化规律。本研究的实验结果可为地下工程复杂应力条件下低渗透性岩体的渗透性分析提供重要的实验和理论依据。
{"title":"Study on the evolution of permeability properties of limestone under different stress paths","authors":"Gang Huang, Gang Lu, Ji Zhang, Fengjun Zhou, Dongwei Li","doi":"10.1515/arh-2024-0003","DOIUrl":"https://doi.org/10.1515/arh-2024-0003","url":null,"abstract":"Stress path change has a great relationship with the effect of deformation and strength of rock. However, the underground rock body is in the engineering environment where the stress field, seepage field, and other fields are coupled to change, the law of fluid flow in the rock body is complex and variable. The change in the stress field has an important effect on the seepage characteristics of rock body; therefore, it is necessary to study the pattern of rock permeability evolution pattern by different stress paths. This study is based on the study of limestone, conducting triaxial unloading seepage mechanics experiments, the evolution of permeability properties of limestone specimens was analyzed based on the test results. The results show that in the conventional triaxial loading seepage test, the permeability of the limestone decreases before the rock stress reaches the peak intensity and increases after that. Increasing axial pressure unloading surrounding pressure compression section, permeability loss rate and effective stress are in line with the changing law of Gaussian distribution function. Under the action of constant axial pressure unloading surrounding pressure, with the increase in unloading amount, the permeability rate of change appears to increase slowly, and in the late stage of unloading section, the permeability rate of change appears to surge. Unloading section permeability change rate and cumulative unloading amount are in line with the law of change of the exponential function. Creep unloading pressure seepage test found that unloading pressure stage strain-time and permeability-time evolution characteristics are in line with the exponential rule of change. The experimental results of this study can provide an important experimental and theoretical basis for the permeability analysis of low-permeability rock body under complex stress conditions in underground engineering.","PeriodicalId":50738,"journal":{"name":"Applied Rheology","volume":null,"pages":null},"PeriodicalIF":1.8,"publicationDate":"2024-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140572995","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Applied Rheology
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1