{"title":"Integrated multifunctional properties of polypropylene composites by employing three-dimensional flower-like MgO with hierarchical surface morphology","authors":"Jun-Wei Zha, Qi Cheng, Jin-Tao Zhai, Xingming Bian, George Chen, Zhi-Min Dang","doi":"10.1049/nde2.12006","DOIUrl":null,"url":null,"abstract":"<p>Polymer nanocomposites have attracted increased attention for use in the field of high-voltage direct current (HVDC) cable insulation. To study the use of polymer nanocomposites for this purpose, 3D flower-like MgO (flower-MgO) particles with hierarchical surface morphology are first synthesised. Polypropylene (PP) was simultaneously mixed with styrene-(ethylene-co-butylene)-styrene triblock copolymer (SEBS) and flower-MgO to obtain PP/SEBS/flower-MgO composites. The microstructural, thermal, electrical, and mechanical properties of the obtained nanocomposites were then studied in detail. The results showed that flower-MgO particles loaded at low concentration were well dispersed in the PP/SEBS matrix. The incorporation of flower-MgO particles has been found to significantly suppress the injection of homocharges and strengthen the ability to release the charge, thus containing accumulation of the space charge. The DC breakdown strength of PP/SEBS/flower-MgO composites was increased to 323 MV/m. Meanwhile, the tensile strength and elongation at break of the obtained composites was improved by loading 0.5 phr flower-MgO because of the synergistic toughening effects of SEBS and MgO. The investigation demonstrates the immense potential to replace nonrecyclable cross-linked polyethylene as an HVDC cable insulating material.</p>","PeriodicalId":36855,"journal":{"name":"IET Nanodielectrics","volume":"4 1","pages":"27-37"},"PeriodicalIF":3.8000,"publicationDate":"2021-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/nde2.12006","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Nanodielectrics","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/nde2.12006","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 2
Abstract
Polymer nanocomposites have attracted increased attention for use in the field of high-voltage direct current (HVDC) cable insulation. To study the use of polymer nanocomposites for this purpose, 3D flower-like MgO (flower-MgO) particles with hierarchical surface morphology are first synthesised. Polypropylene (PP) was simultaneously mixed with styrene-(ethylene-co-butylene)-styrene triblock copolymer (SEBS) and flower-MgO to obtain PP/SEBS/flower-MgO composites. The microstructural, thermal, electrical, and mechanical properties of the obtained nanocomposites were then studied in detail. The results showed that flower-MgO particles loaded at low concentration were well dispersed in the PP/SEBS matrix. The incorporation of flower-MgO particles has been found to significantly suppress the injection of homocharges and strengthen the ability to release the charge, thus containing accumulation of the space charge. The DC breakdown strength of PP/SEBS/flower-MgO composites was increased to 323 MV/m. Meanwhile, the tensile strength and elongation at break of the obtained composites was improved by loading 0.5 phr flower-MgO because of the synergistic toughening effects of SEBS and MgO. The investigation demonstrates the immense potential to replace nonrecyclable cross-linked polyethylene as an HVDC cable insulating material.