Research on Hydro-pneumatic Suspension Test Bench Based on Electro-hydraulic Proportional Control

IF 0.7 Q4 ENGINEERING, MECHANICAL International Journal of Fluid Power Pub Date : 2023-06-21 DOI:10.13052/ijfp1439-9776.2436
Xin Bai, L. Lu, Meng Sun, Leilei Zhao, Hui Li
{"title":"Research on Hydro-pneumatic Suspension Test Bench Based on Electro-hydraulic Proportional Control","authors":"Xin Bai, L. Lu, Meng Sun, Leilei Zhao, Hui Li","doi":"10.13052/ijfp1439-9776.2436","DOIUrl":null,"url":null,"abstract":"Compared with the traditional automotive suspension, hydro-pneumatic suspension has the characteristics of large energy storage ratio, nonlinear stiffness and can change the ground clearance of the vehicle body, which makes the vehicle have good ride comfort and handling stability during driving. In order to improve the performance of hydro-pneumatic suspension, it is necessary to design hydro-pneumatic suspension test bench for performance test. Aiming at the problem that the output signal of the mechanical test bench used in China is single and has large error, which is difficult to meet the performance test requirements of hydro-pneumatic suspension, a hydro-pneumatic suspension test bench based on electro-hydraulic proportional control is designed. Through AMESim/MATLAB joint system modeling and simulation, in the tracking comparison of sinusoidal signal, compared with the traditional PID control method, the fuzzy PID control method reduces the error by 56.8% and the lag time by 70%; Through the experimental analysis of hydro-pneumatic suspension elastic force characteristic diagram, indicator diagram and damping force velocity characteristic diagram, the error rate of the test bench in sinusoidal signal tracking experiment is less than 15%, which meets the test requirements of hydro-pneumatic suspension.","PeriodicalId":13977,"journal":{"name":"International Journal of Fluid Power","volume":" ","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2023-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Fluid Power","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.13052/ijfp1439-9776.2436","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 1

Abstract

Compared with the traditional automotive suspension, hydro-pneumatic suspension has the characteristics of large energy storage ratio, nonlinear stiffness and can change the ground clearance of the vehicle body, which makes the vehicle have good ride comfort and handling stability during driving. In order to improve the performance of hydro-pneumatic suspension, it is necessary to design hydro-pneumatic suspension test bench for performance test. Aiming at the problem that the output signal of the mechanical test bench used in China is single and has large error, which is difficult to meet the performance test requirements of hydro-pneumatic suspension, a hydro-pneumatic suspension test bench based on electro-hydraulic proportional control is designed. Through AMESim/MATLAB joint system modeling and simulation, in the tracking comparison of sinusoidal signal, compared with the traditional PID control method, the fuzzy PID control method reduces the error by 56.8% and the lag time by 70%; Through the experimental analysis of hydro-pneumatic suspension elastic force characteristic diagram, indicator diagram and damping force velocity characteristic diagram, the error rate of the test bench in sinusoidal signal tracking experiment is less than 15%, which meets the test requirements of hydro-pneumatic suspension.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于电液比例控制的油气悬架试验台研究
与传统的汽车悬架相比,液气悬架具有储能比大、刚度非线性、可改变车身离地间隙等特点,使车辆在行驶过程中具有良好的乘坐舒适性和操纵稳定性。为了提高油气悬架的性能,有必要设计油气悬架性能测试台。针对我国机械试验台输出信号单一、误差大,难以满足油气悬架性能测试要求的问题,设计了一种基于电液比例控制的油气悬架试验台。通过AMESim/MLAB联合系统建模与仿真,在正弦信号的跟踪比较中,与传统PID控制方法相比,模糊PID控制方法的误差降低了56.8%,滞后时间降低了70%;通过对液气悬架弹性力特性图、指标图和阻尼力-速度特性图的实验分析,测试台在正弦信号跟踪实验中的误差率小于15%,满足液气悬架的测试要求。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
International Journal of Fluid Power
International Journal of Fluid Power ENGINEERING, MECHANICAL-
CiteScore
1.60
自引率
0.00%
发文量
16
期刊最新文献
A Review of Pilot-operated Hydraulic Valves – Development, Challenges, and a Comparative Study Facilitating Energy Monitoring and Fault Diagnosis of Pneumatic Cylinders with Exergy and Machine Learning Performance Analysis of a Pressurized Assembly with a Reinforced O-ring Hydrodynamic Analysis of Shallow Water Sloshing in Ship Chamber Under Longitudinal Earthquake Effect of Blowing Ratio on Turbine Blade Air Film Cooling Under Different Engine Conditions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1