Updates on polyurethane and its multifunctional applications in biomedical engineering

IF 5 Q1 ENGINEERING, BIOMEDICAL Progress in biomedical engineering (Bristol, England) Pub Date : 2023-08-11 DOI:10.1088/2516-1091/acef84
Z. Miri, S. Faré, Qianli Ma, H. Haugen
{"title":"Updates on polyurethane and its multifunctional applications in biomedical engineering","authors":"Z. Miri, S. Faré, Qianli Ma, H. Haugen","doi":"10.1088/2516-1091/acef84","DOIUrl":null,"url":null,"abstract":"Polyurethanes (PUs) have properties that make them promising in biomedical applications. PU is recognized as one of the main families of blood and biocompatible materials. PU plays a vital role in the design of medical devices in various medical fields. The structure of PU contains two segments: soft and hard. Its elastomeric feature is due to its soft segment, and its excellent and high mechanical property is because of its hard segment. It is possible to achieve specific desirable and targeted properties by changing the soft and hard chemical structures and the ratio between them. The many properties of PU each draw the attention of different medical fields. This work reviews PU highlighted properties, such as biodegradability, biostability, shape memory, and improved antibacterial activity. Also, because PU has a variety of applications, this review restricts its focus to PU’s prominent applications in tissue engineering, cardiovascular medicine, drug delivery, and wound healing. In addition, it contains a brief review of PU’s applications in biosensors and oral administration.","PeriodicalId":74582,"journal":{"name":"Progress in biomedical engineering (Bristol, England)","volume":" ","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2023-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in biomedical engineering (Bristol, England)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/2516-1091/acef84","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 2

Abstract

Polyurethanes (PUs) have properties that make them promising in biomedical applications. PU is recognized as one of the main families of blood and biocompatible materials. PU plays a vital role in the design of medical devices in various medical fields. The structure of PU contains two segments: soft and hard. Its elastomeric feature is due to its soft segment, and its excellent and high mechanical property is because of its hard segment. It is possible to achieve specific desirable and targeted properties by changing the soft and hard chemical structures and the ratio between them. The many properties of PU each draw the attention of different medical fields. This work reviews PU highlighted properties, such as biodegradability, biostability, shape memory, and improved antibacterial activity. Also, because PU has a variety of applications, this review restricts its focus to PU’s prominent applications in tissue engineering, cardiovascular medicine, drug delivery, and wound healing. In addition, it contains a brief review of PU’s applications in biosensors and oral administration.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
聚氨酯及其在生物医学工程中的多功能应用进展
聚氨酯(pu)的特性使其在生物医学领域的应用前景广阔。聚氨酯是公认的血液和生物相容性材料的主要家族之一。聚氨酯在各个医疗领域的医疗器械设计中起着至关重要的作用。PU的结构分为软、硬两部分。其弹性体特性是由于其软段,其优异和高的机械性能是由于其硬段。通过改变软硬化学结构和它们之间的比例,可以实现特定的理想和目标性能。聚氨酯的许多特性都引起了不同医学领域的关注。本文综述了聚氨酯的主要特性,如生物降解性、生物稳定性、形状记忆和提高的抗菌活性。此外,由于聚氨酯具有多种用途,本文将重点介绍聚氨酯在组织工程、心血管医学、药物输送和伤口愈合等方面的突出应用。此外,还简要介绍了聚氨酯在生物传感器和口服给药方面的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
9.40
自引率
0.00%
发文量
0
期刊最新文献
Development of bioengineered 3D patient derived breast cancer organoid model focusing dynamic fibroblast-stem cell reciprocity. Biomedical applications of the engineered AIEgen-lipid nanostructurein vitroandin vivo. Cell stretching devices integrated with live cell imaging: a powerful approach to study how cells react to mechanical cues. Mathematical models on bone cell homeostasis and kinetics in the presence of electric fields: a review. A review of computational optimization of bone scaffold architecture: methods, challenges, and perspectives.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1