{"title":"A mechanically durable induction heating coating with desirable anti-/de-icing performance","authors":"Yahua Liu, Haojie Sun, Xueguan Song, Cong Liu","doi":"10.1080/02670844.2023.2229563","DOIUrl":null,"url":null,"abstract":"ABSTRACT The anti-/de-icing technology based on induction heating offers significant advantages regarding fast heating, high efficiency, safety and environmental protection. However, the reported methods require the modification of base materials, which lacks universal applicability. Here, a universal and facile anti-/de-icing method is proposed based on induction heating. The durable induction heating coating was prepared by one-step spin coating with micron-sized nickel powder, epoxy resin and silicone resin. The induction heating ability of this coating was investigated by adjusting the proportion of composition, particle size and thickness. An optimal induction heating ability was achieved with the mass ratio of nickel powder and resin, particle size of nickel powder and coating thickness being 1.5, 7 μm and 1070 μm, respectively. We further show this coating can be applied for anti-/de-icing, demonstrated by its excellent de-/anti-icing performances. Finally, the mechanical durability of the coating was verified by the tape peel and sandpaper friction.","PeriodicalId":21995,"journal":{"name":"Surface Engineering","volume":"39 1","pages":"413 - 420"},"PeriodicalIF":2.4000,"publicationDate":"2023-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Surface Engineering","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1080/02670844.2023.2229563","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, COATINGS & FILMS","Score":null,"Total":0}
引用次数: 0
Abstract
ABSTRACT The anti-/de-icing technology based on induction heating offers significant advantages regarding fast heating, high efficiency, safety and environmental protection. However, the reported methods require the modification of base materials, which lacks universal applicability. Here, a universal and facile anti-/de-icing method is proposed based on induction heating. The durable induction heating coating was prepared by one-step spin coating with micron-sized nickel powder, epoxy resin and silicone resin. The induction heating ability of this coating was investigated by adjusting the proportion of composition, particle size and thickness. An optimal induction heating ability was achieved with the mass ratio of nickel powder and resin, particle size of nickel powder and coating thickness being 1.5, 7 μm and 1070 μm, respectively. We further show this coating can be applied for anti-/de-icing, demonstrated by its excellent de-/anti-icing performances. Finally, the mechanical durability of the coating was verified by the tape peel and sandpaper friction.
期刊介绍:
Surface Engineering provides a forum for the publication of refereed material on both the theory and practice of this important enabling technology, embracing science, technology and engineering. Coverage includes design, surface modification technologies and process control, and the characterisation and properties of the final system or component, including quality control and non-destructive examination.