Synergistic improvement to dimensional stability of Populus cathay ana via hemicellulose removal/alkali lignin impregnation

IF 2.2 3区 农林科学 Q2 FORESTRY Holzforschung Pub Date : 2023-04-24 DOI:10.1515/hf-2022-0147
Meng Yang, Runhua Zhang, E. Ma
{"title":"Synergistic improvement to dimensional stability of Populus cathay ana via hemicellulose removal/alkali lignin impregnation","authors":"Meng Yang, Runhua Zhang, E. Ma","doi":"10.1515/hf-2022-0147","DOIUrl":null,"url":null,"abstract":"Abstract Poor dimensional stability restricts the commercial utilization of fast-growing wood. In this study, fast-growing poplar (Populus cathayana) was treated by removing hemicellulose with hydrothermal treatment and impregnating alkali lignin via full-cell process, synergistically, for enhanced dimensional stability. After modification, hydroxyl groups were reduced in hemicellulose removed wood (DHC), alkali lignin was observed to fill in the cell lumens of vessels and wood fibers in the impregnated wood (AL) and in the wood modified by hemicellulose removal with alkali lignin impregnation (DHCAL). Compared with untreated wood, the volumetric swelling ratio of DHC and AL decreased by 11 % and 21 % under relative humidity (RH) of 89 %, respectively. The volumetric swelling ratio of DHCAL decreased by over 50 %, indicating a positive synergistic effect. The combination of hemicellulose removal and alkali lignin impregnation treatment improved the dimensional stability of wood significantly by reconstructing wood chemical components with various levels of hygroscopicity. This work could meaningfully contribute to the efficient utilization of fast-growing wood and promote the added value of industrial alkali lignin.","PeriodicalId":13083,"journal":{"name":"Holzforschung","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2023-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Holzforschung","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1515/hf-2022-0147","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"FORESTRY","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract Poor dimensional stability restricts the commercial utilization of fast-growing wood. In this study, fast-growing poplar (Populus cathayana) was treated by removing hemicellulose with hydrothermal treatment and impregnating alkali lignin via full-cell process, synergistically, for enhanced dimensional stability. After modification, hydroxyl groups were reduced in hemicellulose removed wood (DHC), alkali lignin was observed to fill in the cell lumens of vessels and wood fibers in the impregnated wood (AL) and in the wood modified by hemicellulose removal with alkali lignin impregnation (DHCAL). Compared with untreated wood, the volumetric swelling ratio of DHC and AL decreased by 11 % and 21 % under relative humidity (RH) of 89 %, respectively. The volumetric swelling ratio of DHCAL decreased by over 50 %, indicating a positive synergistic effect. The combination of hemicellulose removal and alkali lignin impregnation treatment improved the dimensional stability of wood significantly by reconstructing wood chemical components with various levels of hygroscopicity. This work could meaningfully contribute to the efficient utilization of fast-growing wood and promote the added value of industrial alkali lignin.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
半纤维素去除/碱木质素浸渍协同提高杨的尺寸稳定性
尺寸稳定性差限制了速生木材的商业利用。本研究以速生杨(Populus cathayana)为材料,采用水热处理去除半纤维素和全细胞浸渍碱木质素的方法进行处理,协同提高杨的尺寸稳定性。改性后,半纤维素去除木材(DHC)中的羟基减少,在浸渍木材(AL)和用碱木质素浸渍半纤维素去除改性的木材(DHCAL)中,观察到碱木质素填充在容器和木材纤维的细胞腔中。与未处理的木材相比,DHC和AL的体积膨胀比降低了11 % 和21 % 相对湿度(RH)为89 %, 分别地DHCAL的体积膨胀率降低了50以上 %, 表明了积极的协同作用。半纤维素去除和碱木质素浸渍处理相结合,通过重建具有不同吸湿性水平的木材化学成分,显著提高了木材的尺寸稳定性。这项工作有助于速生木材的有效利用,提高工业碱木质素的附加值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Holzforschung
Holzforschung 工程技术-材料科学:纸与木材
CiteScore
4.60
自引率
4.20%
发文量
83
审稿时长
3.3 months
期刊介绍: Holzforschung is an international scholarly journal that publishes cutting-edge research on the biology, chemistry, physics and technology of wood and wood components. High quality papers about biotechnology and tree genetics are also welcome. Rated year after year as one of the top scientific journals in the category of Pulp and Paper (ISI Journal Citation Index), Holzforschung represents innovative, high quality basic and applied research. The German title reflects the journal''s origins in a long scientific tradition, but all articles are published in English to stimulate and promote cooperation between experts all over the world. Ahead-of-print publishing ensures fastest possible knowledge transfer.
期刊最新文献
Degradation of Pinus sylvestris and Populus tremula by laccate Ganoderma species Wood density and chemical composition variation of Eucalyptus urophylla clone in different environments Wood discrimination of six commonly traded Phoebe and Machilus species using high-resolution plastid and nuclear DNA barcodes Physical, vibro-mechanical and optical properties of pernambuco in relation to bow-making qualitative evaluation and wood diversity Comparative wood and charcoal anatomy of Manilkara sp.: contribution for market inspections
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1