Marilín Sánchez-Purihuamán, Jorge Hernández-Hernández, Junior Caro-Castro, C. Carreño-Farfán
{"title":"Rhizospheric actinobacteria of Opuntia sp. “prickly pear” with deaminase activity as growth promoting in Solanum lycopersicum L. under salinity stress","authors":"Marilín Sánchez-Purihuamán, Jorge Hernández-Hernández, Junior Caro-Castro, C. Carreño-Farfán","doi":"10.17268/sci.agropecu.2023.002","DOIUrl":null,"url":null,"abstract":"The growing of Solanum lycopersicum L. \"tomato\" is affected by salinity, reducing its water consumption, and affecting negatively plant growth and development. Therefore, it is necessary to seek sustainable cultivation and fertilization options, such as the use of plant growth-promoting rhizobacteria. This research aimed to determine the potential of rhizospheric Actinobacteria isolated from Opuntia sp. \"prickly pear\" as tomato growth promoting under salinity. The genera of isolated Actinobacteria were identified, the synthesis of 1-aminocyclopropane-1-carboxylic acid deaminase (ACC) was characterized and its effect on the germination of tomato cultivar Río Grande seeds was evaluated. Two tests on non-saline and saline soils were carried out to compare the effect of Streptomyces spp. and Nocardia sp. in plant development in the greenhouse. Several Actinobacteria genera were isolated from 87.03% of samples, highlighting Streptomyces (46.67%) and Nocardia (34.0%). 9.33% of the Actinobacteria presented ACC deaminase activity, which increased seed germination, and the growth and yield of seedlings with increases of 88.98% (height); 96.30% (number of sheets); 201.35% (aerial biomass); 173.77% (root length); 100.0% (root weight); 150.0% (number of fruits) and 173.14% (weight of fruits), as well as 1.37 mg/g in the chlorophyll content in the saline soil. Also, Streptomyces sp. strain 21 decreased sodium content and increased potassium and K+/Na+ rate in the leaves and roots of the plants with the highest yield (1.068 kg/plant) in the saline soil. In conclusion, the positive effect of Actinobacteria as promoters of tomato growth and yield, increasing chlorophyll content, and decreasing salinity stress was demonstrated.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17268/sci.agropecu.2023.002","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1
Abstract
The growing of Solanum lycopersicum L. "tomato" is affected by salinity, reducing its water consumption, and affecting negatively plant growth and development. Therefore, it is necessary to seek sustainable cultivation and fertilization options, such as the use of plant growth-promoting rhizobacteria. This research aimed to determine the potential of rhizospheric Actinobacteria isolated from Opuntia sp. "prickly pear" as tomato growth promoting under salinity. The genera of isolated Actinobacteria were identified, the synthesis of 1-aminocyclopropane-1-carboxylic acid deaminase (ACC) was characterized and its effect on the germination of tomato cultivar Río Grande seeds was evaluated. Two tests on non-saline and saline soils were carried out to compare the effect of Streptomyces spp. and Nocardia sp. in plant development in the greenhouse. Several Actinobacteria genera were isolated from 87.03% of samples, highlighting Streptomyces (46.67%) and Nocardia (34.0%). 9.33% of the Actinobacteria presented ACC deaminase activity, which increased seed germination, and the growth and yield of seedlings with increases of 88.98% (height); 96.30% (number of sheets); 201.35% (aerial biomass); 173.77% (root length); 100.0% (root weight); 150.0% (number of fruits) and 173.14% (weight of fruits), as well as 1.37 mg/g in the chlorophyll content in the saline soil. Also, Streptomyces sp. strain 21 decreased sodium content and increased potassium and K+/Na+ rate in the leaves and roots of the plants with the highest yield (1.068 kg/plant) in the saline soil. In conclusion, the positive effect of Actinobacteria as promoters of tomato growth and yield, increasing chlorophyll content, and decreasing salinity stress was demonstrated.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.