Direct fabrication of flexible tensile sensors enabled by polariton energy transfer based on graphene nanosheet films

IF 3.5 3区 工程技术 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Nami Jishu yu Jingmi Gongcheng/Nanotechnology and Precision Engineering Pub Date : 2023-03-01 DOI:10.1063/10.0016758
Xi Zhang, Junchi Ma, Wenhao Huang, Jichen Zhang, Chaoyang Lyu, Yu Zhang, Bo Wen, X. Wang, Jing Ye, Dong-feng Diao
{"title":"Direct fabrication of flexible tensile sensors enabled by polariton energy transfer based on graphene nanosheet films","authors":"Xi Zhang, Junchi Ma, Wenhao Huang, Jichen Zhang, Chaoyang Lyu, Yu Zhang, Bo Wen, X. Wang, Jing Ye, Dong-feng Diao","doi":"10.1063/10.0016758","DOIUrl":null,"url":null,"abstract":"A fundamental problem in the direct manufacturing of flexible devices is the low melting temperature of flexible substrates, which hinders the development of flexible electronics. Proposed here is an electron-cyclotron-resonance sputtering system that can batch-fabricate devices directly on flexible substrates under a low temperature by virtue of the polariton energy transfer between the plasma and the material. Flexible graphene nanosheet-embedded carbon (F-GNEC) films are manufactured directly on polyimide, polyethylene terephthalate, and polydimethylsiloxane, and how the substrate bias (electron energy), microwave power (plasma flux and energy), and magnetic field (electron flux) affect the nanostructure of the F-GNEC films is investigated, indicating that electron energy and flux contribute to the formation of standing graphene nanosheets in the film. The films have good uniformity of distribution in a large size (17 mm × 17 mm), and tensile and angle sensors with a high gauge factor (0.92) and fast response (50 ms) for a machine hand are obtained by virtue of the unique nanostructure of the F-GNEC film. This work sheds light on the quantum manufacturing of carbon sensors and its applications for intelligent machine hands and virtual-reality technology.","PeriodicalId":35428,"journal":{"name":"Nami Jishu yu Jingmi Gongcheng/Nanotechnology and Precision Engineering","volume":" ","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nami Jishu yu Jingmi Gongcheng/Nanotechnology and Precision Engineering","FirstCategoryId":"1087","ListUrlMain":"https://doi.org/10.1063/10.0016758","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 2

Abstract

A fundamental problem in the direct manufacturing of flexible devices is the low melting temperature of flexible substrates, which hinders the development of flexible electronics. Proposed here is an electron-cyclotron-resonance sputtering system that can batch-fabricate devices directly on flexible substrates under a low temperature by virtue of the polariton energy transfer between the plasma and the material. Flexible graphene nanosheet-embedded carbon (F-GNEC) films are manufactured directly on polyimide, polyethylene terephthalate, and polydimethylsiloxane, and how the substrate bias (electron energy), microwave power (plasma flux and energy), and magnetic field (electron flux) affect the nanostructure of the F-GNEC films is investigated, indicating that electron energy and flux contribute to the formation of standing graphene nanosheets in the film. The films have good uniformity of distribution in a large size (17 mm × 17 mm), and tensile and angle sensors with a high gauge factor (0.92) and fast response (50 ms) for a machine hand are obtained by virtue of the unique nanostructure of the F-GNEC film. This work sheds light on the quantum manufacturing of carbon sensors and its applications for intelligent machine hands and virtual-reality technology.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于石墨烯纳米片薄膜的极化子能量转移柔性张力传感器的直接制造
直接制造柔性器件的一个根本问题是柔性衬底的熔融温度低,这阻碍了柔性电子的发展。本文提出了一种电子回旋共振溅射系统,该系统可以利用等离子体和材料之间的极化子能量传递,在低温下直接在柔性衬底上批量制造器件。在聚酰亚胺、聚对苯二甲酸乙二醇酯和聚二甲基硅氧烷上直接制备柔性石墨烯纳米片嵌入碳(F-GNEC)薄膜,并研究了衬底偏压(电子能量)、微波功率(等离子体通量和能量)和磁场(电子通量)对F-GNEC薄膜纳米结构的影响,表明电子能量和通量有助于薄膜中直立石墨烯纳米片的形成。该薄膜在大尺寸(17 mm × 17 mm)上具有良好的分布均匀性,并且由于F-GNEC薄膜独特的纳米结构,获得了测量因子高(0.92)、机械手响应快(50 ms)的拉力和角度传感器。这项工作揭示了碳传感器的量子制造及其在智能机械手和虚拟现实技术中的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Nami Jishu yu Jingmi Gongcheng/Nanotechnology and Precision Engineering
Nami Jishu yu Jingmi Gongcheng/Nanotechnology and Precision Engineering Engineering-Industrial and Manufacturing Engineering
CiteScore
6.50
自引率
0.00%
发文量
1379
审稿时长
14 weeks
期刊最新文献
An advanced cost-efficient IoT method for stroke rehabilitation using smart gloves Design and analysis of longitudinal–flexural hybrid transducer for ultrasonic peen forming Droplet microfluidic chip for precise monitoring of dynamic solution changes Effects of simulated zero gravity on adhesion, cell structure, proliferation, and growth behavior, in glioblastoma multiforme Electrode design for multimode suppression of aluminum nitride tuning fork resonators
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1