An advanced cost-efficient IoT method for stroke rehabilitation using smart gloves

IF 3.5 3区 工程技术 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Nami Jishu yu Jingmi Gongcheng/Nanotechnology and Precision Engineering Pub Date : 2023-08-23 DOI:10.1063/10.0020290
A. Arivarasi, D. Thiripurasundari, A. Selvakumar, B. Kumaar, T. Aghil, S. Rahul, R. Kannan
{"title":"An advanced cost-efficient IoT method for stroke rehabilitation using smart gloves","authors":"A. Arivarasi, D. Thiripurasundari, A. Selvakumar, B. Kumaar, T. Aghil, S. Rahul, R. Kannan","doi":"10.1063/10.0020290","DOIUrl":null,"url":null,"abstract":"Stroke represents a severe, widespread, and widely acknowledged health crisis on both national and international levels. It is one of the most prevalent life-threatening conditions. Despite impressive advances in treating stroke, in addition to a need for effective patient care services, many sufferers still rely solely on physical interventions. The present paper describes and explains the use of a newly designed gadget for stroke survivors who cannot move their fingers. This is a sophisticated mobile device that enables stroke patients to regain their muscle memory and thus their ability to perform repetitive actions by continuing to tighten and stretch their muscles without the intervention of a physiotherapist. Gamification methodology is used to encourage patients to become involved in the process of rehabilitation. The device also has sensors that take information and transmit it to an app through an ESP32 connection. This enables physicians to view glove usage information remotely and keep track of an individual patient’s health. Communication between app and glove is facilitated by a broker in the Amazon Web Service IoT. With the robotic glove presented here, the recovery rate is found to be 90.23% over four weeks’ duration, which represents a significant improvement compared with existing hospital-based rehabilitation techniques.","PeriodicalId":35428,"journal":{"name":"Nami Jishu yu Jingmi Gongcheng/Nanotechnology and Precision Engineering","volume":" ","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2023-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nami Jishu yu Jingmi Gongcheng/Nanotechnology and Precision Engineering","FirstCategoryId":"1087","ListUrlMain":"https://doi.org/10.1063/10.0020290","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Stroke represents a severe, widespread, and widely acknowledged health crisis on both national and international levels. It is one of the most prevalent life-threatening conditions. Despite impressive advances in treating stroke, in addition to a need for effective patient care services, many sufferers still rely solely on physical interventions. The present paper describes and explains the use of a newly designed gadget for stroke survivors who cannot move their fingers. This is a sophisticated mobile device that enables stroke patients to regain their muscle memory and thus their ability to perform repetitive actions by continuing to tighten and stretch their muscles without the intervention of a physiotherapist. Gamification methodology is used to encourage patients to become involved in the process of rehabilitation. The device also has sensors that take information and transmit it to an app through an ESP32 connection. This enables physicians to view glove usage information remotely and keep track of an individual patient’s health. Communication between app and glove is facilitated by a broker in the Amazon Web Service IoT. With the robotic glove presented here, the recovery rate is found to be 90.23% over four weeks’ duration, which represents a significant improvement compared with existing hospital-based rehabilitation techniques.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种使用智能手套进行中风康复的先进成本效益物联网方法
中风在国家和国际层面上代表着一场严重、广泛和公认的健康危机。它是最常见的危及生命的疾病之一。尽管在治疗中风方面取得了令人印象深刻的进展,但除了需要有效的患者护理服务外,许多患者仍然完全依赖身体干预。本文描述并解释了一种新设计的小工具在中风幸存者无法移动手指时的使用。这是一种复杂的移动设备,使中风患者能够在没有理疗师干预的情况下继续收紧和拉伸肌肉,从而恢复肌肉记忆,从而恢复重复动作的能力。游戏化方法用于鼓励患者参与康复过程。该设备还有传感器,可以获取信息并通过ESP32连接将其传输到应用程序。这使医生能够远程查看手套使用信息,并跟踪单个患者的健康状况。亚马逊网络服务物联网中的经纪人为应用程序和手套之间的通信提供了便利。使用这里介绍的机器人手套,发现在四周的时间内恢复率为90.23%,与现有的基于医院的康复技术相比,这是一个显著的改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Nami Jishu yu Jingmi Gongcheng/Nanotechnology and Precision Engineering
Nami Jishu yu Jingmi Gongcheng/Nanotechnology and Precision Engineering Engineering-Industrial and Manufacturing Engineering
CiteScore
6.50
自引率
0.00%
发文量
1379
审稿时长
14 weeks
期刊最新文献
An advanced cost-efficient IoT method for stroke rehabilitation using smart gloves Design and analysis of longitudinal–flexural hybrid transducer for ultrasonic peen forming Droplet microfluidic chip for precise monitoring of dynamic solution changes Effects of simulated zero gravity on adhesion, cell structure, proliferation, and growth behavior, in glioblastoma multiforme Electrode design for multimode suppression of aluminum nitride tuning fork resonators
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1