Effect of Solvents in 1-Butyl-1,2,4-Triazolium Trifluoroacetate Triggered Synthesis of 2,3-Dihydroquinazolin..

IF 0.9 Q4 CHEMISTRY, PHYSICAL Current Organocatalysis Pub Date : 2022-05-12 DOI:10.2174/2213337209666220512093626
Anjitha Satheesh, Gopika Gokuldas, K. Gayathri, E. Kandasamy
{"title":"Effect of Solvents in 1-Butyl-1,2,4-Triazolium Trifluoroacetate Triggered Synthesis of 2,3-Dihydroquinazolin..","authors":"Anjitha Satheesh, Gopika Gokuldas, K. Gayathri, E. Kandasamy","doi":"10.2174/2213337209666220512093626","DOIUrl":null,"url":null,"abstract":"\n\nQuinazolinones are a class of heterocyclic compounds that have a wide variety of applications. They are also used in agrochemicals. There are several methodologies reported for the synthesis of 2,3-dihydroquinazolines using various catalysts.\n\n\n\nHere, by using 1-butyl-1,2,4-triazolium as cation and trifluoroacetate as anion, 2,3-dihydroquinazolin-4(1H)-one has been synthesized. For the synthesis of 2,3-dihydroquinazolin-4(1H)-one condensation of anthranilamide with the corresponding aldehyde in the presence of organocatalyst and solvent is done. Using benzaldehyde as the parent aldehyde, to validate the outcome, the benzaldehydes were selected as follows a) benzaldehyde, b) 4-methoxybenzaldehyde – electron releasing group and c) 4-nitrobenzaldehyde – electronwithdrawing group. Solvent study has been done with solvents varied from polar to apolar. Both polar protic and polar aprotic solvents are used for the reactions. The polar protic solvents used were water, methanol, ethanol, isopropanol, butanol, hexane-1-ol, and glycerol. The polar aprotic solvents used are ethyl acetate, DMF,acetonitrile, and DMSO. The moderately apolar solvents used are DCM, carbon tetrachloride, 1,4 dioxane, and chloroform.\n\n\n\nThe synthesized triazolium salts are found soluble in polar aprotic, polar protic solvents and few moderately apolar solvents such as DCM, chloroform, acetonitrile, water, methanol and ethanol whereas insoluble with apolar solvents like toluene, benzene, and hexane.The yield of 2-phenyl-2,3-dihydroquinazolin-4(1H)-one was low for 1-butyl-1,2,4-triazolium trifluoroacetate based organocatalyst. But for substituted benzaldehyde, the yield was comparatively high. Comparatively, the yield for 2-(4-methoxyphenyl)-2,3-dihydroquinazolin-4(1H)-one, where the aromatic benzaldehyde had electron-donating group, is less than 2-(4-nitrophenyl)-2,3-dihydroquinazolin-4(1H)-one, where the aromatic benzaldehyde had an electron-withdrawing group.\n\n\n\nSubstituted benzaldehyde gave better yields than benzaldehyde. And nitro group which is electrowithdrawing attached to benzaldehyde enhanced the electrophilic nature at carbonyl center showed higher yields than methoxy group which is electron donating attached to benzaldehyde as it deactivates the carbonyl carbon. The polar protic solvents like water, ethanol and methanol stabilizes the ionic intermediates and gave better yield. Even the moderately apolar solvents like DCM, chloroform resulted in good yields, green solvents like water, ethanol and methanol would be a better choice as solvents. The carbon chain on the solvent has got an effect on product yield. As the carbon chain increases in solvent, the yield decreases due to the separation difficulties. The polar aprotic solvents did gave better yields but not as good as polar protic solvents.\n","PeriodicalId":10945,"journal":{"name":"Current Organocatalysis","volume":" ","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2022-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Organocatalysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2174/2213337209666220512093626","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 1

Abstract

Quinazolinones are a class of heterocyclic compounds that have a wide variety of applications. They are also used in agrochemicals. There are several methodologies reported for the synthesis of 2,3-dihydroquinazolines using various catalysts. Here, by using 1-butyl-1,2,4-triazolium as cation and trifluoroacetate as anion, 2,3-dihydroquinazolin-4(1H)-one has been synthesized. For the synthesis of 2,3-dihydroquinazolin-4(1H)-one condensation of anthranilamide with the corresponding aldehyde in the presence of organocatalyst and solvent is done. Using benzaldehyde as the parent aldehyde, to validate the outcome, the benzaldehydes were selected as follows a) benzaldehyde, b) 4-methoxybenzaldehyde – electron releasing group and c) 4-nitrobenzaldehyde – electronwithdrawing group. Solvent study has been done with solvents varied from polar to apolar. Both polar protic and polar aprotic solvents are used for the reactions. The polar protic solvents used were water, methanol, ethanol, isopropanol, butanol, hexane-1-ol, and glycerol. The polar aprotic solvents used are ethyl acetate, DMF,acetonitrile, and DMSO. The moderately apolar solvents used are DCM, carbon tetrachloride, 1,4 dioxane, and chloroform. The synthesized triazolium salts are found soluble in polar aprotic, polar protic solvents and few moderately apolar solvents such as DCM, chloroform, acetonitrile, water, methanol and ethanol whereas insoluble with apolar solvents like toluene, benzene, and hexane.The yield of 2-phenyl-2,3-dihydroquinazolin-4(1H)-one was low for 1-butyl-1,2,4-triazolium trifluoroacetate based organocatalyst. But for substituted benzaldehyde, the yield was comparatively high. Comparatively, the yield for 2-(4-methoxyphenyl)-2,3-dihydroquinazolin-4(1H)-one, where the aromatic benzaldehyde had electron-donating group, is less than 2-(4-nitrophenyl)-2,3-dihydroquinazolin-4(1H)-one, where the aromatic benzaldehyde had an electron-withdrawing group. Substituted benzaldehyde gave better yields than benzaldehyde. And nitro group which is electrowithdrawing attached to benzaldehyde enhanced the electrophilic nature at carbonyl center showed higher yields than methoxy group which is electron donating attached to benzaldehyde as it deactivates the carbonyl carbon. The polar protic solvents like water, ethanol and methanol stabilizes the ionic intermediates and gave better yield. Even the moderately apolar solvents like DCM, chloroform resulted in good yields, green solvents like water, ethanol and methanol would be a better choice as solvents. The carbon chain on the solvent has got an effect on product yield. As the carbon chain increases in solvent, the yield decreases due to the separation difficulties. The polar aprotic solvents did gave better yields but not as good as polar protic solvents.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
溶剂对1-丁基-1,2,4-三氟乙酸三唑引发2,3-二氢喹唑啉合成的影响。。
喹唑啉酮是一类应用广泛的杂环化合物。它们也被用于农用化学品。报道了几种使用各种催化剂合成2,3-二氢喹唑啉的方法。本文以1-丁基-1,2,4-三唑鎓为阳离子,三氟乙酸盐为阴离子,合成了2,3-二氢喹唑啉-4(1H)-酮。为了合成2,3-二氢喹唑啉-4(1H),在有机催化剂和溶剂的存在下,进行了邻氨基苯甲酰胺与相应醛的一次缩合反应。以苯甲醛为母体醛,为了验证结果,选择苯甲醛如下:a)苯甲醛,b)4-甲氧基苯甲醛-电子释放基团和c)4-硝基苯甲醛-吸电子基团。溶剂研究已经用从极性到非极性的各种溶剂进行。极性质子溶剂和极性非质子溶剂都用于反应。所用的极性质子溶剂为水、甲醇、乙醇、异丙醇、丁醇、己-1-醇和甘油。所使用的极性非质子溶剂是乙酸乙酯、DMF、乙腈和DMSO。使用的中等非极性溶剂是DCM、四氯化碳、1,4-二恶烷和氯仿。发现合成的三唑鎓盐可溶于极性非质子、极性质子溶剂和少数中等非极性溶剂,如DCM、氯仿、乙腈、水、甲醇和乙醇,而不溶于非极性溶液,如甲苯、苯和己烷。基于三氟乙酸1-丁基-1,2,4-三唑鎓的有机催化剂的2-苯基-2,3-二氢喹唑啉-4(1H)-酮的产率较低。但对于取代苯甲醛,产率相对较高。相比较而言,2-(4-甲氧基苯基)-2,3-二氢喹唑啉-4(1H)-酮的产率小于2-(4-硝基苯基)-2,2-二氢喹啉-4(1H)-酮,其中芳族苯甲醛具有吸电子基团。取代苯甲醛的产率比苯甲醛高。与苯甲醛上的给电子的甲氧基相比,与苯甲醛相连的吸电子硝基增强了羰基中心的亲电性质,表现出更高的产率,因为它使羰基碳失活。极性质子溶剂如水、乙醇和甲醇稳定了离子中间体,并给出了更好的产率。即使是中等非极性溶剂,如DCM、氯仿,也能获得良好的产率,绿色溶剂,如水、乙醇和甲醇将是更好的溶剂选择。溶剂上的碳链对产物收率有影响。随着溶剂中碳链的增加,由于分离困难,产率降低。极性非质子溶剂确实给出了更好的产率,但不如极性质子溶剂好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Current Organocatalysis
Current Organocatalysis CHEMISTRY, PHYSICAL-
CiteScore
2.00
自引率
0.00%
发文量
28
期刊介绍: Current Organocatalysis is an international peer-reviewed journal that publishes significant research in all areas of organocatalysis. The journal covers organo homogeneous/heterogeneous catalysis, innovative mechanistic studies and kinetics of organocatalytic processes focusing on practical, theoretical and computational aspects. It also includes potential applications of organocatalysts in the fields of drug discovery, synthesis of novel molecules, synthetic method development, green chemistry and chemoenzymatic reactions. This journal also accepts papers on methods, reagents, and mechanism of a synthetic process and technology pertaining to chemistry. Moreover, this journal features full-length/mini review articles within organocatalysis and synthetic chemistry. It is the premier source of organocatalysis and synthetic methods related information for chemists, biologists and engineers pursuing research in industry and academia.
期刊最新文献
Biotransformation of Cinnamic Acid, Cinnamaldehyde, Furfural and Epoxidation of Cyclohexene by Plant Catalase Water Extract of Onion Catalyst: A Sustainable Approach for the Synthesis of 4-Substituted 1,5-Benzodiazepine Derivatives via an In Situ Generated Enaminones Design of Dendritic Foldamers as Catalysts for Organic Synthesis A Review on the Recent Progress of Layered Double Hydroxides (LDHs)- based Catalysts for Heterocyclic Synthesis Advances in Synthesis of Indazole Variants: A Comprehensive Review of Transition Metal, Acid/Base and Green Chemistry-based Catalytic Approaches
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1