{"title":"Broadband differential interference in a waveguide with a gradient refractive index distribution","authors":"K. Gut","doi":"10.4302/plp.v14i3.1157","DOIUrl":null,"url":null,"abstract":"The paper presents a model of a planar broadband differential waveguide interferometer with a gradient refractive index distribution. Its response to the change in the refractive index of the waveguide cover layer is presented. The analysis was performed for the wavelength range from 0.5um to 0.7um. The orthogonal TE0 and TM0 modes propagating in this wavelength range are considered. The influence of the coverage refractive index change on the output characteristics of the system is shown. Full Text: PDF ReferencesP. Kozma, F. Kehl, E.Ehrentreich-Forster, C. Stamm and F.F. Bier, \"Integrated planar optical waveguide interferometer biosensors: A comparative review\", Biosens. Bioelectron. 58, 287 (2014), CrossRef M. Kitsara, K. Misiakos, I. Raptis, and E. Makarona, \"Integrated optical frequency-resolved Mach-Zehnder interferometers for label-free affinity sensing\", Opt. Express 18, 8193 (2010). CrossRef K. Misiakos, I. Raptis, A. Salapatas, E. Makarona, A. Bostials, et al., \"Broad-band Mach-Zehnder interferometers as high performance refractive index sensors: Theory and monolithic implementation\", Opt. Express 22, 8856 (2014). CrossRef K. Misiakos, I. Raptis, E. Makarona, A. Botsialas, A. Salapatas, et al, \"All-silicon monolithic Mach-Zehnder interferometer as a refractive index and bio-chemical sensor\", Opt. Express 22, 26803 (2014) CrossRef K. Misiakos, E. Makarona, M. Hoekman, R. Fyrogenis, K. Tukkiniemi, et al., \"All-Silicon Spectrally Resolved Interferometric Circuit for Multiplexed Diagnostics: A Monolithic Lab-on-a-Chip Integrating All Active and Passive Components\", ACS Photonics 6, 1694 (2019). CrossRef E. Makarona, A. Salapatas, I. Raptis, P. Petrou, S. Kakabakos, et al., \"Broadband Young interferometry for simultaneous dual polarization bioanalytics\", J Opt Soc Am B 34, 1691 (2017). CrossRef K. Gut, \"Broad-band difference interferometer as a refractive index sensor\", Opt. Express 25, 3111 (2017), CrossRef K. Gut, \"Study of a Broadband Difference Interferometer Based on Low-Cost Polymer Slab Waveguides\", Nanomaterials 9, 729 (2019), CrossRef T. Pustelny, J. Ignac-Nowacka and Z. Opilski, \"Optical investigations on layered metalphthalocyanine nanostructures affected by NO2 applying the surface plasmon resonance method\", Opt. Appl. 34, 563 (2004). CrossRef W. Lukosz, Sensor Actuat. B-Chem. \"Integrated optical chemical and direct biochemical sensors\", 29, 37 (1995). CrossRef Z. Qi, S. Xia and N. Matsuda, \"Spectropolarimetric interferometer based on single-mode glass waveguides\", Opt. Express, 16, 2245 (2008). CrossRef K. Gut, A. Zakrzewski, T. Pustelny, \"Sensitivity of Polarimetric Waveguide Interferometer for Different Wavelengths\", Acta Phys. Pol. 118, 1140 (2010). CrossRef J.E. Broquin, S. Honkanen, \"Integrated Photonics on Glass: A Review of the Ion-Exchange Technology Achievements\", Appl.Sci. 11, 4472 (2021). CrossRef G.C. Righini, J. Linares, \"Active and Quantum Integrated Photonic Elements by Ion Exchange in Glass\", Appl.Sci. 11, 5222 (2021). CrossRef","PeriodicalId":20055,"journal":{"name":"Photonics Letters of Poland","volume":" ","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2022-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Photonics Letters of Poland","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4302/plp.v14i3.1157","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0
Abstract
The paper presents a model of a planar broadband differential waveguide interferometer with a gradient refractive index distribution. Its response to the change in the refractive index of the waveguide cover layer is presented. The analysis was performed for the wavelength range from 0.5um to 0.7um. The orthogonal TE0 and TM0 modes propagating in this wavelength range are considered. The influence of the coverage refractive index change on the output characteristics of the system is shown. Full Text: PDF ReferencesP. Kozma, F. Kehl, E.Ehrentreich-Forster, C. Stamm and F.F. Bier, "Integrated planar optical waveguide interferometer biosensors: A comparative review", Biosens. Bioelectron. 58, 287 (2014), CrossRef M. Kitsara, K. Misiakos, I. Raptis, and E. Makarona, "Integrated optical frequency-resolved Mach-Zehnder interferometers for label-free affinity sensing", Opt. Express 18, 8193 (2010). CrossRef K. Misiakos, I. Raptis, A. Salapatas, E. Makarona, A. Bostials, et al., "Broad-band Mach-Zehnder interferometers as high performance refractive index sensors: Theory and monolithic implementation", Opt. Express 22, 8856 (2014). CrossRef K. Misiakos, I. Raptis, E. Makarona, A. Botsialas, A. Salapatas, et al, "All-silicon monolithic Mach-Zehnder interferometer as a refractive index and bio-chemical sensor", Opt. Express 22, 26803 (2014) CrossRef K. Misiakos, E. Makarona, M. Hoekman, R. Fyrogenis, K. Tukkiniemi, et al., "All-Silicon Spectrally Resolved Interferometric Circuit for Multiplexed Diagnostics: A Monolithic Lab-on-a-Chip Integrating All Active and Passive Components", ACS Photonics 6, 1694 (2019). CrossRef E. Makarona, A. Salapatas, I. Raptis, P. Petrou, S. Kakabakos, et al., "Broadband Young interferometry for simultaneous dual polarization bioanalytics", J Opt Soc Am B 34, 1691 (2017). CrossRef K. Gut, "Broad-band difference interferometer as a refractive index sensor", Opt. Express 25, 3111 (2017), CrossRef K. Gut, "Study of a Broadband Difference Interferometer Based on Low-Cost Polymer Slab Waveguides", Nanomaterials 9, 729 (2019), CrossRef T. Pustelny, J. Ignac-Nowacka and Z. Opilski, "Optical investigations on layered metalphthalocyanine nanostructures affected by NO2 applying the surface plasmon resonance method", Opt. Appl. 34, 563 (2004). CrossRef W. Lukosz, Sensor Actuat. B-Chem. "Integrated optical chemical and direct biochemical sensors", 29, 37 (1995). CrossRef Z. Qi, S. Xia and N. Matsuda, "Spectropolarimetric interferometer based on single-mode glass waveguides", Opt. Express, 16, 2245 (2008). CrossRef K. Gut, A. Zakrzewski, T. Pustelny, "Sensitivity of Polarimetric Waveguide Interferometer for Different Wavelengths", Acta Phys. Pol. 118, 1140 (2010). CrossRef J.E. Broquin, S. Honkanen, "Integrated Photonics on Glass: A Review of the Ion-Exchange Technology Achievements", Appl.Sci. 11, 4472 (2021). CrossRef G.C. Righini, J. Linares, "Active and Quantum Integrated Photonic Elements by Ion Exchange in Glass", Appl.Sci. 11, 5222 (2021). CrossRef
本文提出了一种具有梯度折射率分布的平面宽带差分波导干涉仪的模型。给出了其对波导覆盖层折射率变化的响应。分析的波长范围为0.5 ~ 0.7um。考虑了在该波长范围内传播的正交TE0和TM0模式。给出了覆盖折射率变化对系统输出特性的影响。全文:PDF陈晓明,陈晓明,陈晓明,“集成平面光波导干涉仪生物传感器的比较研究”,生物工程学报。陈晓明,陈晓明,陈晓明,等,“基于光学频率分辨的马赫-曾德干涉仪无标签亲和检测技术”,生物电子学报,2018,58,287(2014)。CrossRef K. Misiakos, I. Raptis, A. Salapatas, E. Makarona, A. Bostials,等,“宽带Mach-Zehnder干涉仪的高性能折射率传感器:理论与集成实现”,光子学报,22(2014)。CrossRef K. Misiakos, I. Raptis, E. Makarona, a . Botsialas, a . Salapatas等,“全硅单片macho - zehnder干涉仪作为折射率和生物化学传感器”,光学学报22,26803 (2014)CrossRef E. Makarona, A. Salapatas, I. Raptis, P. Petrou, S. Kakabakos等,“宽带Young干涉法同步双偏振生物分析”,中国生物工程学报,34,(2017)。CrossRef K. Gut,“基于低成本聚合物平板波导的宽带差分干涉仪的研究”,纳米材料9,729 (2019),CrossRef T. Pustelny, J. Ignac-Nowacka和Z. Opilski,“NO2对层状金属酞菁纳米结构影响的光学研究”,光学学报,34,563(2004)。CrossRef W. Lukosz,传感器实测仪。B-Chem。“综合光学化学和直接生化传感器”,29,37(1995)。CrossRef齐志强,夏世生,Matsuda,“基于单模玻璃波导的偏振光谱干涉仪”,光学学报,16,2245(2008)。CrossRef K. Gut, A. Zakrzewski, T. Pustelny,“不同波长偏振波导干涉仪的灵敏度”,物理学报。科学通报,2011(2)。J.E. Broquin, S. Honkanen,“集成光子学在玻璃上的应用:离子交换技术的研究进展”,应用科学。11, 4472(2021)。引用本文:王志强,李志强,“玻璃中离子交换的有源量子集成光子元件”,应用物理学报。11, 5222(2021)。CrossRef