Control oriented modelling and modal analysis of the deformable mirror M4 of the extremely large telescope

IF 1.8 4区 数学 Q3 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Mathematical and Computer Modelling of Dynamical Systems Pub Date : 2021-01-02 DOI:10.1080/13873954.2020.1850480
Philip L. Neureuther, Kevin Schmidt, T. Bertram, O. Sawodny
{"title":"Control oriented modelling and modal analysis of the deformable mirror M4 of the extremely large telescope","authors":"Philip L. Neureuther, Kevin Schmidt, T. Bertram, O. Sawodny","doi":"10.1080/13873954.2020.1850480","DOIUrl":null,"url":null,"abstract":"ABSTRACT In this article, we derive a mechanical distributed parameter model for the annular sector plate segments of the Extremely Large Telescope’s deformable mirror M4. Additionally, we modally analyse the derived model via analytical and numerical approaches. The deformable mirror M4 is used to reject wavefront disturbances and enhance the optical imaging quality. We present a control oriented annular sector Kirchhoff–Love plate model featuring an elastic boundary condition and its modal analysis for one of the six identical M4 segments. Subsequently, we show that the well-known method of separation of variables is incompatible with the modal analysis of the presented distributed parameter model in cylindrical coordinates. Moreover, we successfully modally analyse the model using a finite difference approximation and a realistic construction of an M4 segment via a finite element approximation to compare the results. The modal analyses provide consistent results and therefore, both models underlying the analyses are consistent.","PeriodicalId":49871,"journal":{"name":"Mathematical and Computer Modelling of Dynamical Systems","volume":"27 1","pages":"295 - 321"},"PeriodicalIF":1.8000,"publicationDate":"2021-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/13873954.2020.1850480","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical and Computer Modelling of Dynamical Systems","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1080/13873954.2020.1850480","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 3

Abstract

ABSTRACT In this article, we derive a mechanical distributed parameter model for the annular sector plate segments of the Extremely Large Telescope’s deformable mirror M4. Additionally, we modally analyse the derived model via analytical and numerical approaches. The deformable mirror M4 is used to reject wavefront disturbances and enhance the optical imaging quality. We present a control oriented annular sector Kirchhoff–Love plate model featuring an elastic boundary condition and its modal analysis for one of the six identical M4 segments. Subsequently, we show that the well-known method of separation of variables is incompatible with the modal analysis of the presented distributed parameter model in cylindrical coordinates. Moreover, we successfully modally analyse the model using a finite difference approximation and a realistic construction of an M4 segment via a finite element approximation to compare the results. The modal analyses provide consistent results and therefore, both models underlying the analyses are consistent.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
超大型望远镜变形镜M4的面向控制建模与模态分析
摘要在本文中,我们推导了超大望远镜M4变形镜环形扇形板段的机械分布参数模型。此外,我们还通过分析和数值方法对导出的模型进行了模态分析。可变形反射镜M4用于抑制波前扰动并提高光学成像质量。我们提出了一个面向控制的环形扇形Kirchhoff–Love板模型,该模型具有弹性边界条件,并对六个相同的M4节段中的一个进行了模态分析。随后,我们证明了众所周知的变量分离方法与所提出的圆柱坐标下的分布参数模型的模态分析是不相容的。此外,我们使用有限差分近似成功地对模型进行了模态分析,并通过有限元近似对M4段进行了实际构造,以比较结果。模态分析提供了一致的结果,因此,分析的两个模型是一致的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
3.80
自引率
5.30%
发文量
7
审稿时长
>12 weeks
期刊介绍: Mathematical and Computer Modelling of Dynamical Systems (MCMDS) publishes high quality international research that presents new ideas and approaches in the derivation, simplification, and validation of models and sub-models of relevance to complex (real-world) dynamical systems. The journal brings together engineers and scientists working in different areas of application and/or theory where researchers can learn about recent developments across engineering, environmental systems, and biotechnology amongst other fields. As MCMDS covers a wide range of application areas, papers aim to be accessible to readers who are not necessarily experts in the specific area of application. MCMDS welcomes original articles on a range of topics including: -methods of modelling and simulation- automation of modelling- qualitative and modular modelling- data-based and learning-based modelling- uncertainties and the effects of modelling errors on system performance- application of modelling to complex real-world systems.
期刊最新文献
Multivariate doubly truncated moments for generalized skew-elliptical distributions with applications Model Reduction of Parametric Differential-Algebraic Systems by Balanced Truncation Analytical and approximate monotone solutions of the mixed order fractional nabla operators subject to bounded conditions Probabilistic degenerate central Bell polynomials Dynamic multibody model of a turntable ladder truck considering unloaded outriggers and sensitivity-based parameter identification
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1