Classification of hazelnuts according to their quality using deep learning algorithms

IF 1.2 4区 农林科学 Q4 FOOD SCIENCE & TECHNOLOGY Czech Journal of Food Sciences Pub Date : 2022-06-20 DOI:10.17221/21/2022-cjfs
Nizamettin Erbaş, Gokalp Cinarer, Kazım Kılıç
{"title":"Classification of hazelnuts according to their quality using deep learning algorithms","authors":"Nizamettin Erbaş, Gokalp Cinarer, Kazım Kılıç","doi":"10.17221/21/2022-cjfs","DOIUrl":null,"url":null,"abstract":"Hazelnut is a product with high nutritional and economic value. In maintaining the quality value of hazelnut, the classification process is of great importance. In the present day, the quality classification of hazelnuts and other crops is performed in general manually, and so it is difficult and costly. Performing this classification with modern agricultural techniques is much more important in terms of quality. This study was based on a model intended to detect hazelnut quality. The model is about the establishment of an artificial intelligence-based classification system that can detect the hidden defects of hazelnuts. In the developed model, the visuals used in the dataset are divided into training and test groups. In the model, hazelnuts are divided into 5 classes according to their quality using AlexNet architecture and modern deep learning (DL) techniques instead of traditional hazelnut classification methods. In this model developed based on artificial intelligence, a very good approach was presented with the accurate classification of 99%. Moreover, the values regarding precision and recall were also determined at 98.7% and 99.6%, respectively. This study is important in terms of becoming widespread information technology use and computer-assisted applications in the agricultural economics field such as product classification, quality, and control.","PeriodicalId":10882,"journal":{"name":"Czech Journal of Food Sciences","volume":" ","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2022-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Czech Journal of Food Sciences","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.17221/21/2022-cjfs","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 2

Abstract

Hazelnut is a product with high nutritional and economic value. In maintaining the quality value of hazelnut, the classification process is of great importance. In the present day, the quality classification of hazelnuts and other crops is performed in general manually, and so it is difficult and costly. Performing this classification with modern agricultural techniques is much more important in terms of quality. This study was based on a model intended to detect hazelnut quality. The model is about the establishment of an artificial intelligence-based classification system that can detect the hidden defects of hazelnuts. In the developed model, the visuals used in the dataset are divided into training and test groups. In the model, hazelnuts are divided into 5 classes according to their quality using AlexNet architecture and modern deep learning (DL) techniques instead of traditional hazelnut classification methods. In this model developed based on artificial intelligence, a very good approach was presented with the accurate classification of 99%. Moreover, the values regarding precision and recall were also determined at 98.7% and 99.6%, respectively. This study is important in terms of becoming widespread information technology use and computer-assisted applications in the agricultural economics field such as product classification, quality, and control.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用深度学习算法根据榛子的质量进行分类
榛子是一种营养价值和经济价值都很高的产品。为了保持榛子的质量价值,分类过程至关重要。目前,榛子和其他作物的质量分类通常是手动进行的,因此这是困难和昂贵的。用现代农业技术进行这种分类在质量方面要重要得多。这项研究是基于一个旨在检测榛子质量的模型。该模型是关于建立一个基于人工智能的分类系统,可以检测榛子的隐藏缺陷。在开发的模型中,数据集中使用的视觉效果被分为训练组和测试组。在该模型中,使用AlexNet架构和现代深度学习(DL)技术,而不是传统的榛子分类方法,根据榛子的质量将其分为5类。在这个基于人工智能开发的模型中,提出了一种非常好的方法,准确分类率为99%。此外,准确度和召回率也分别为98.7%和99.6%。这项研究对于信息技术在农业经济领域(如产品分类、质量和控制)的广泛应用和计算机辅助应用具有重要意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Czech Journal of Food Sciences
Czech Journal of Food Sciences Food Science & Technology, Chemistry-食品科技
CiteScore
2.60
自引率
0.00%
发文量
48
审稿时长
7 months
期刊介绍: Original research, critical review articles, and short communications dealing with food technology and processing (including food biochemistry, mikrobiology, analyse, engineering, nutrition and economy). Papers are published in English.
期刊最新文献
Nutritional habits comparison of the baby boomer, X, Y, and Z generations located at a private college in Muğla, Türkiye Determination of some heavy metals in different wheat flour brands in Sulaimani, Kurdistan Region - Iraq Nutritional composition analysis and quality evaluation of cattle in different regions of Guizhou Province (China) Characteristics of cases with foodborne diarrheagenic Escherichia coli infection in Huzhou, China Microalgae in lab-grown meat production
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1