New Link Functions for Distribution–Specific Quantile Regression Based on Vector Generalized Linear and Additive Models

IF 1 Q3 STATISTICS & PROBABILITY Journal of Probability and Statistics Pub Date : 2019-05-07 DOI:10.1155/2019/3493628
V. Miranda-Soberanis, T. Yee
{"title":"New Link Functions for Distribution–Specific Quantile Regression Based on Vector Generalized Linear and Additive Models","authors":"V. Miranda-Soberanis, T. Yee","doi":"10.1155/2019/3493628","DOIUrl":null,"url":null,"abstract":"In the usual quantile regression setting, the distribution of the response given the explanatory variables is unspecified. In this work, the distribution is specified and we introduce new link functions to directly model specified quantiles of seven 1–parameter continuous distributions. Using the vector generalized linear and additive model (VGLM/VGAM) framework, we transform certain prespecified quantiles to become linear or additive predictors. Our parametric quantile regression approach adopts VGLMs/VGAMs because they can handle multiple linear predictors and encompass many distributions beyond the exponential family. Coupled with the ability to fit smoothers, the underlying strong assumption of the distribution can be relaxed so as to offer a semiparametric–type analysis. By allowing multiple linear and additive predictors simultaneously, the quantile crossing problem can be avoided by enforcing parallelism constraint matrices. This article gives details of a software implementation called the VGAMextra package for R. Both the data and recently developed software used in this paper are freely downloadable from the internet.","PeriodicalId":44760,"journal":{"name":"Journal of Probability and Statistics","volume":" ","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2019-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2019/3493628","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Probability and Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2019/3493628","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 1

Abstract

In the usual quantile regression setting, the distribution of the response given the explanatory variables is unspecified. In this work, the distribution is specified and we introduce new link functions to directly model specified quantiles of seven 1–parameter continuous distributions. Using the vector generalized linear and additive model (VGLM/VGAM) framework, we transform certain prespecified quantiles to become linear or additive predictors. Our parametric quantile regression approach adopts VGLMs/VGAMs because they can handle multiple linear predictors and encompass many distributions beyond the exponential family. Coupled with the ability to fit smoothers, the underlying strong assumption of the distribution can be relaxed so as to offer a semiparametric–type analysis. By allowing multiple linear and additive predictors simultaneously, the quantile crossing problem can be avoided by enforcing parallelism constraint matrices. This article gives details of a software implementation called the VGAMextra package for R. Both the data and recently developed software used in this paper are freely downloadable from the internet.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于向量广义线性和加性模型的分布特定分位数回归的新连接函数
在通常的分位数回归设置中,给定解释变量的响应分布是未指定的。在这项工作中,指定了分布,我们引入了新的链接函数来直接对七个1参数连续分布的指定分位数进行建模。使用向量广义线性和加性模型(VGLM/VGAM)框架,我们将某些预先指定的分位数转换为线性或加性预测因子。我们的参数分位数回归方法采用VGLMs/VGAM,因为它们可以处理多个线性预测因子,并涵盖指数族之外的许多分布。再加上拟合平滑器的能力,可以放松对分布的基本强假设,从而提供半参数型分析。通过同时允许多个线性和加法预测器,可以通过强制执行并行约束矩阵来避免分位数交叉问题。本文详细介绍了一个名为R的VGAMextra包的软件实现。本文中使用的数据和最近开发的软件都可以从互联网上免费下载。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Probability and Statistics
Journal of Probability and Statistics STATISTICS & PROBABILITY-
自引率
0.00%
发文量
14
审稿时长
18 weeks
期刊最新文献
Flexible Lévy-Based Models for Time Series of Count Data with Zero-Inflation, Overdispersion, and Heavy Tails Exponentially Generated Modified Chen Distribution with Applications to Lifetime Dataset Bayesian Estimation of the Stress-Strength Reliability Based on Generalized Order Statistics for Pareto Distribution Monitoring Changes in Clustering Solutions: A Review of Models and Applications Fitting Time Series Models to Fisheries Data to Ascertain Age
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1