{"title":"New Link Functions for Distribution–Specific Quantile Regression Based on Vector Generalized Linear and Additive Models","authors":"V. Miranda-Soberanis, T. Yee","doi":"10.1155/2019/3493628","DOIUrl":null,"url":null,"abstract":"In the usual quantile regression setting, the distribution of the response given the explanatory variables is unspecified. In this work, the distribution is specified and we introduce new link functions to directly model specified quantiles of seven 1–parameter continuous distributions. Using the vector generalized linear and additive model (VGLM/VGAM) framework, we transform certain prespecified quantiles to become linear or additive predictors. Our parametric quantile regression approach adopts VGLMs/VGAMs because they can handle multiple linear predictors and encompass many distributions beyond the exponential family. Coupled with the ability to fit smoothers, the underlying strong assumption of the distribution can be relaxed so as to offer a semiparametric–type analysis. By allowing multiple linear and additive predictors simultaneously, the quantile crossing problem can be avoided by enforcing parallelism constraint matrices. This article gives details of a software implementation called the VGAMextra package for R. Both the data and recently developed software used in this paper are freely downloadable from the internet.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2019-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2019/3493628","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2019/3493628","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1
Abstract
In the usual quantile regression setting, the distribution of the response given the explanatory variables is unspecified. In this work, the distribution is specified and we introduce new link functions to directly model specified quantiles of seven 1–parameter continuous distributions. Using the vector generalized linear and additive model (VGLM/VGAM) framework, we transform certain prespecified quantiles to become linear or additive predictors. Our parametric quantile regression approach adopts VGLMs/VGAMs because they can handle multiple linear predictors and encompass many distributions beyond the exponential family. Coupled with the ability to fit smoothers, the underlying strong assumption of the distribution can be relaxed so as to offer a semiparametric–type analysis. By allowing multiple linear and additive predictors simultaneously, the quantile crossing problem can be avoided by enforcing parallelism constraint matrices. This article gives details of a software implementation called the VGAMextra package for R. Both the data and recently developed software used in this paper are freely downloadable from the internet.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.