Memristive Devices for Time Domain Compute-in-Memory

IF 2 Q3 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE IEEE Journal on Exploratory Solid-State Computational Devices and Circuits Pub Date : 2022-10-25 DOI:10.1109/JXCDC.2022.3217098
Florian Freye;Jie Lou;Christopher Bengel;Stephan Menzel;Stefan Wiefels;Tobias Gemmeke
{"title":"Memristive Devices for Time Domain Compute-in-Memory","authors":"Florian Freye;Jie Lou;Christopher Bengel;Stephan Menzel;Stefan Wiefels;Tobias Gemmeke","doi":"10.1109/JXCDC.2022.3217098","DOIUrl":null,"url":null,"abstract":"Analog compute schemes and compute-in-memory (CIM) have emerged in an effort to reduce the increasing power hunger of convolutional neural networks (CNNs), which exceeds the constraints of edge devices. Memristive device types are a relatively new offering with interesting opportunities for unexplored circuit concepts. In this work, the use of memristive devices in cascaded time-domain CIM (TDCIM) is introduced with the primary goal of reducing the size of fully unrolled architectures. The different effects influencing the determinism in memristive devices are outlined together with reliability concerns. Architectures for binary as well as multibit multiply and accumulate (MAC) cells are presented and evaluated. As more involved circuits offer more accurate compute result, a tradeoff between design effort and accuracy comes into the picture. To further evaluate this tradeoff, the impact of variations on overall compute accuracy is discussed. The presented cells reach an energy/OP of 0.23 fJ at a size of \n<inline-formula> <tex-math>$1.2~{\\mu{ }}\\text{m}^{2}$ </tex-math></inline-formula>\n for binary and 6.04 fJ at \n<inline-formula> <tex-math>$3.2~\\mu \\text{m}^{2}$ </tex-math></inline-formula>\n for \n<inline-formula> <tex-math>$4\\times 4$ </tex-math></inline-formula>\n bit MAC operations.","PeriodicalId":54149,"journal":{"name":"IEEE Journal on Exploratory Solid-State Computational Devices and Circuits","volume":"8 2","pages":"119-127"},"PeriodicalIF":2.0000,"publicationDate":"2022-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/iel7/6570653/9969523/09930136.pdf","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal on Exploratory Solid-State Computational Devices and Circuits","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/9930136/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 2

Abstract

Analog compute schemes and compute-in-memory (CIM) have emerged in an effort to reduce the increasing power hunger of convolutional neural networks (CNNs), which exceeds the constraints of edge devices. Memristive device types are a relatively new offering with interesting opportunities for unexplored circuit concepts. In this work, the use of memristive devices in cascaded time-domain CIM (TDCIM) is introduced with the primary goal of reducing the size of fully unrolled architectures. The different effects influencing the determinism in memristive devices are outlined together with reliability concerns. Architectures for binary as well as multibit multiply and accumulate (MAC) cells are presented and evaluated. As more involved circuits offer more accurate compute result, a tradeoff between design effort and accuracy comes into the picture. To further evaluate this tradeoff, the impact of variations on overall compute accuracy is discussed. The presented cells reach an energy/OP of 0.23 fJ at a size of $1.2~{\mu{ }}\text{m}^{2}$ for binary and 6.04 fJ at $3.2~\mu \text{m}^{2}$ for $4\times 4$ bit MAC operations.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
内存中时域计算的记忆器件
模拟计算方案和内存计算(CIM)已经出现,以减少卷积神经网络(cnn)日益增长的功率饥渴,这超出了边缘设备的限制。记忆器件类型是一种相对较新的产品,为未探索的电路概念提供了有趣的机会。在这项工作中,介绍了级联时域CIM (TDCIM)中记忆器件的使用,其主要目标是减少完全展开架构的尺寸。概述了影响记忆器件确定性的不同因素以及可靠性问题。提出并评价了二进制和多比特乘法和累积(MAC)单元的结构。由于涉及的电路越多,计算结果就越精确,因此需要在设计努力和精度之间进行权衡。为了进一步评估这种权衡,我们讨论了变化对总体计算精度的影响。所提出的单元在大小为$1.2~{\mu{}}\text{m}^{2}$时的能量/OP为0.23 fJ,在$3.2~\mu \text{m}^{2}$时的能量/OP为6.04 fJ,用于$4\ × 4$ bit的MAC操作。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
5.00
自引率
4.20%
发文量
11
审稿时长
13 weeks
期刊最新文献
2024 Index IEEE Journal on Exploratory Solid-State Computational Devices and Circuits Vol. 10 Front Cover Table of Contents INFORMATION FOR AUTHORS IEEE Journal on Exploratory Solid-State Computational Devices and Circuits publication information
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1