Bayesian adjustment for measurement error in an offset variable in a Poisson regression model

IF 1.2 4区 数学 Q2 STATISTICS & PROBABILITY Statistical Modelling Pub Date : 2021-05-24 DOI:10.1177/1471082X211008011
Kangjie Zhang, Juxin Liu, Yang Liu, Peng Zhang, R. Carroll
{"title":"Bayesian adjustment for measurement error in an offset variable in a Poisson regression model","authors":"Kangjie Zhang, Juxin Liu, Yang Liu, Peng Zhang, R. Carroll","doi":"10.1177/1471082X211008011","DOIUrl":null,"url":null,"abstract":"Fatal car crashes are the leading cause of death among teenagers in the USA. The Graduated Driver Licensing (GDL) programme is one effective policy for reducing the number of teen fatal car crashes. Our study focuses on the number of fatal car crashes in Michigan during 1990–2004 excluding 1997, when the GDL started. We use Poisson regression with spatially dependent random effects to model the county level teen car crash counts. We develop a measurement error model to account for the fact that the total teenage population in the county level is used as a proxy for the teenage driver population. To the best of our knowledge, there is no existing literature that considers adjustment for measurement error in an offset variable. Furthermore, limited work has addressed the measurement errors in the context of spatial data. In our modelling, a Berkson measurement error model with spatial random effects is applied to adjust for the error-prone offset variable in a Bayesian paradigm. The Bayesian Markov chain Monte Carlo (MCMC) sampling is implemented in rstan. To assess the consequence of adjusting for measurement error, we compared two models with and without adjustment for measurement error. We found the effect of a time indicator becomes less significant with the measurement-error adjustment. It leads to our conclusion that the reduced number of teen drivers can help explain, to some extent, the effectiveness of GDL.","PeriodicalId":49476,"journal":{"name":"Statistical Modelling","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2021-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1177/1471082X211008011","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistical Modelling","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1177/1471082X211008011","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 1

Abstract

Fatal car crashes are the leading cause of death among teenagers in the USA. The Graduated Driver Licensing (GDL) programme is one effective policy for reducing the number of teen fatal car crashes. Our study focuses on the number of fatal car crashes in Michigan during 1990–2004 excluding 1997, when the GDL started. We use Poisson regression with spatially dependent random effects to model the county level teen car crash counts. We develop a measurement error model to account for the fact that the total teenage population in the county level is used as a proxy for the teenage driver population. To the best of our knowledge, there is no existing literature that considers adjustment for measurement error in an offset variable. Furthermore, limited work has addressed the measurement errors in the context of spatial data. In our modelling, a Berkson measurement error model with spatial random effects is applied to adjust for the error-prone offset variable in a Bayesian paradigm. The Bayesian Markov chain Monte Carlo (MCMC) sampling is implemented in rstan. To assess the consequence of adjusting for measurement error, we compared two models with and without adjustment for measurement error. We found the effect of a time indicator becomes less significant with the measurement-error adjustment. It leads to our conclusion that the reduced number of teen drivers can help explain, to some extent, the effectiveness of GDL.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
泊松回归模型中偏移变量测量误差的贝叶斯平差
致命车祸是美国青少年死亡的主要原因。毕业驾驶执照(GDL)计划是减少青少年致命车祸数量的一项有效政策。我们的研究重点是1990-2004年密歇根州致命车祸的数量,不包括GDL开始的1997年。我们使用具有空间相关随机效应的泊松回归来对县级青少年车祸计数进行建模。我们开发了一个测量误差模型,以说明县一级的青少年总人口被用作青少年司机人口的代理。据我们所知,现有文献中没有考虑偏移变量测量误差的调整。此外,有限的工作已经解决了空间数据背景下的测量误差。在我们的建模中,应用具有空间随机效应的Berkson测量误差模型来调整贝叶斯范式中易于出错的偏移变量。在rstan中实现了贝叶斯马尔可夫链蒙特卡罗(MCMC)采样。为了评估测量误差调整的结果,我们比较了有测量误差调整和无测量误差调整两种模型。我们发现,随着测量误差的调整,时间指示器的影响变得不那么显著。我们得出的结论是,青少年司机数量的减少在一定程度上有助于解释GDL的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Statistical Modelling
Statistical Modelling 数学-统计学与概率论
CiteScore
2.20
自引率
0.00%
发文量
16
审稿时长
>12 weeks
期刊介绍: The primary aim of the journal is to publish original and high-quality articles that recognize statistical modelling as the general framework for the application of statistical ideas. Submissions must reflect important developments, extensions, and applications in statistical modelling. The journal also encourages submissions that describe scientifically interesting, complex or novel statistical modelling aspects from a wide diversity of disciplines, and submissions that embrace the diversity of applied statistical modelling.
期刊最新文献
A black box approach to fitting smooth models of mortality Linear or smooth? Enhanced model choice in boosting via deselection of base-learners Spatial smoothing revisited: An application to rental data in Munich Joint modelling of non-crossing additive quantile regression via constrained B-spline varying coefficients Canonical correlation analysis in high dimensions with structured regularization.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1