Abiogenesis: the Carter argument reconsidered

IF 1.7 4区 物理与天体物理 Q3 ASTRONOMY & ASTROPHYSICS International Journal of Astrobiology Pub Date : 2022-09-23 DOI:10.1017/s1473550422000350
D. Whitmire
{"title":"Abiogenesis: the Carter argument reconsidered","authors":"D. Whitmire","doi":"10.1017/s1473550422000350","DOIUrl":null,"url":null,"abstract":"\n The observation of life on Earth is commonly believed to be uninformative regarding the probability of abiogenesis on other Earth-like planets. This belief is based on the selection effect of our existence. We necessarily had to find ourselves on a planet where abiogenesis occurred, thus nothing can be inferred about the probability of abiogenesis from this observation alone. This argument was first formalized in a Bayesian framework by Brandon Carter. Though we definitely had to find ourselves on a planet where abiogenesis occurred, I argue here that (1) the Carter conclusion is based on what is known as the ‘Old Evidence Problem’ in Bayesian Confirmation Theory and that (2) taking this into account, the observation of life on Earth is not neutral but evidence that abiogenesis on Earth-like planets is relatively easy. I then give an independent timescale argument that quantifies the prior probabilities, leading to the inference that the timescale for abiogenesis is less than the planetary habitability timescale and therefore the occurrence of abiogenesis on Earth-like planets is not rare.","PeriodicalId":13879,"journal":{"name":"International Journal of Astrobiology","volume":" ","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2022-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Astrobiology","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1017/s1473550422000350","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

The observation of life on Earth is commonly believed to be uninformative regarding the probability of abiogenesis on other Earth-like planets. This belief is based on the selection effect of our existence. We necessarily had to find ourselves on a planet where abiogenesis occurred, thus nothing can be inferred about the probability of abiogenesis from this observation alone. This argument was first formalized in a Bayesian framework by Brandon Carter. Though we definitely had to find ourselves on a planet where abiogenesis occurred, I argue here that (1) the Carter conclusion is based on what is known as the ‘Old Evidence Problem’ in Bayesian Confirmation Theory and that (2) taking this into account, the observation of life on Earth is not neutral but evidence that abiogenesis on Earth-like planets is relatively easy. I then give an independent timescale argument that quantifies the prior probabilities, leading to the inference that the timescale for abiogenesis is less than the planetary habitability timescale and therefore the occurrence of abiogenesis on Earth-like planets is not rare.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
自然发生论:对卡特论点的重新思考
对地球上生命的观察通常被认为对其他类地行星上自然发生的可能性没有提供信息。这种信念是基于我们存在的选择效应。我们必须在一个发生自然发生的星球上找到自己,因此,仅从这一观察无法推断出自然发生的可能性。这个论点首先由布兰登·卡特在贝叶斯框架中形式化。虽然我们必须找到一个发生自然发生的行星,但我在这里认为:(1)卡特的结论是基于贝叶斯确认理论中所谓的“旧证据问题”,(2)考虑到这一点,对地球上生命的观察不是中立的,但证据表明,类地行星上的自然发生相对容易。然后,我给出了一个独立的时间尺度论证,量化了先验概率,从而得出结论:自然发生的时间尺度小于行星可居住的时间尺度,因此,在类地行星上发生自然发生并不罕见。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
International Journal of Astrobiology
International Journal of Astrobiology 地学天文-地球科学综合
CiteScore
3.70
自引率
11.80%
发文量
45
审稿时长
>12 weeks
期刊介绍: International Journal of Astrobiology is the peer-reviewed forum for practitioners in this exciting interdisciplinary field. Coverage includes cosmic prebiotic chemistry, planetary evolution, the search for planetary systems and habitable zones, extremophile biology and experimental simulation of extraterrestrial environments, Mars as an abode of life, life detection in our solar system and beyond, the search for extraterrestrial intelligence, the history of the science of astrobiology, as well as societal and educational aspects of astrobiology. Occasionally an issue of the journal is devoted to the keynote plenary research papers from an international meeting. A notable feature of the journal is the global distribution of its authors.
期刊最新文献
Role of Epigenetic Modification in the Intergeneration Transmission of War Trauma. Succession of the bacterial community from a spacecraft assembly clean room when enriched in brines relevant to Mars Astroecology: bridging the gap between ecology and astrobiology Psychological aspects in unidentified anomalous phenomena (UAP) witnesses Children of time: the geological recency of intelligence and its implications for SETI
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1