Nima Shokri*, Bjorn Stevens, Kaveh Madani, Jürgen Grabe, Michael Schlüter and Irina Smirnova,
{"title":"Climate Informed Engineering: An Essential Pillar of Industry 4.0 Transformation","authors":"Nima Shokri*, Bjorn Stevens, Kaveh Madani, Jürgen Grabe, Michael Schlüter and Irina Smirnova, ","doi":"10.1021/acsengineeringau.2c00037","DOIUrl":null,"url":null,"abstract":"<p >Breakthroughs in computing have led to development of new generations of Earth Systems Models providing detailed information on how our planet may locally respond to the ongoing global warming. Access to such climate information systems presents an unprecedented opportunity for engineers to make tangible contributions to climate adaptation through integration of climate information in their products, designs, and services. We introduce the concept of “Climate Informed Engineering” (CIE) as an emerging interdisciplinary field integrating climatic considerations in engineering products and services. The concept behind CIE is to enable engineers to build infrastructure, devices, sensors or develop new materials and processes that are informed by climate and climate change information. We believe CIE will be an increasingly important dimension of Engineering Science resonating with engineers and scientists with different backgrounds.</p>","PeriodicalId":29804,"journal":{"name":"ACS Engineering Au","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsengineeringau.2c00037","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Engineering Au","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsengineeringau.2c00037","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 1
Abstract
Breakthroughs in computing have led to development of new generations of Earth Systems Models providing detailed information on how our planet may locally respond to the ongoing global warming. Access to such climate information systems presents an unprecedented opportunity for engineers to make tangible contributions to climate adaptation through integration of climate information in their products, designs, and services. We introduce the concept of “Climate Informed Engineering” (CIE) as an emerging interdisciplinary field integrating climatic considerations in engineering products and services. The concept behind CIE is to enable engineers to build infrastructure, devices, sensors or develop new materials and processes that are informed by climate and climate change information. We believe CIE will be an increasingly important dimension of Engineering Science resonating with engineers and scientists with different backgrounds.
期刊介绍:
)ACS Engineering Au is an open access journal that reports significant advances in chemical engineering applied chemistry and energy covering fundamentals processes and products. The journal's broad scope includes experimental theoretical mathematical computational chemical and physical research from academic and industrial settings. Short letters comprehensive articles reviews and perspectives are welcome on topics that include:Fundamental research in such areas as thermodynamics transport phenomena (flow mixing mass & heat transfer) chemical reaction kinetics and engineering catalysis separations interfacial phenomena and materialsProcess design development and intensification (e.g. process technologies for chemicals and materials synthesis and design methods process intensification multiphase reactors scale-up systems analysis process control data correlation schemes modeling machine learning Artificial Intelligence)Product research and development involving chemical and engineering aspects (e.g. catalysts plastics elastomers fibers adhesives coatings paper membranes lubricants ceramics aerosols fluidic devices intensified process equipment)Energy and fuels (e.g. pre-treatment processing and utilization of renewable energy resources; processing and utilization of fuels; properties and structure or molecular composition of both raw fuels and refined products; fuel cells hydrogen batteries; photochemical fuel and energy production; decarbonization; electrification; microwave; cavitation)Measurement techniques computational models and data on thermo-physical thermodynamic and transport properties of materials and phase equilibrium behaviorNew methods models and tools (e.g. real-time data analytics multi-scale models physics informed machine learning models machine learning enhanced physics-based models soft sensors high-performance computing)