Hui Gao, Guangyu Li, Zhong-yi Wang, Nuo Xu, Zongyu Wu
{"title":"An analytical model for wicking in porous media based on statistical geometry theory","authors":"Hui Gao, Guangyu Li, Zhong-yi Wang, Nuo Xu, Zongyu Wu","doi":"10.2478/pjct-2022-0002","DOIUrl":null,"url":null,"abstract":"Abstract In this work, an analytical model describing liquid wicking phenomenon in porous media was constructed, based on the statistical geometry theory and the fractal theory. In the model, a new structure-property relationship, depicted by specific surface, porosity, tortuosity, pore fractal dimension, maximum pore size of the porous media, was introduced into the energy conservation equation. According to the theoretical model, the accumulated imbibition weight in porous media was achieved, and the predictions were verified by available experimental data published in different literatures. Besides, structure parameters influencing the imbibition process upon approaching equilibrium height were discussed. The model and results in this work are useful for the application of porous media in scientific research and industry.","PeriodicalId":20324,"journal":{"name":"Polish Journal of Chemical Technology","volume":" ","pages":"1 - 6"},"PeriodicalIF":0.7000,"publicationDate":"2022-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polish Journal of Chemical Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.2478/pjct-2022-0002","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract In this work, an analytical model describing liquid wicking phenomenon in porous media was constructed, based on the statistical geometry theory and the fractal theory. In the model, a new structure-property relationship, depicted by specific surface, porosity, tortuosity, pore fractal dimension, maximum pore size of the porous media, was introduced into the energy conservation equation. According to the theoretical model, the accumulated imbibition weight in porous media was achieved, and the predictions were verified by available experimental data published in different literatures. Besides, structure parameters influencing the imbibition process upon approaching equilibrium height were discussed. The model and results in this work are useful for the application of porous media in scientific research and industry.
期刊介绍:
Polish Journal of Chemical Technology is a peer-reviewed, international journal devoted to fundamental and applied chemistry, as well as chemical engineering and biotechnology research. It has a very broad scope but favors interdisciplinary research that bring chemical technology together with other disciplines. All authors receive very fast and comprehensive peer-review. Additionally, every published article is promoted to researchers working in the same field.