Adaptive filtering-based current reconstruction in non-contact magnetic sensor array measurement system

IF 1 4区 工程技术 Q4 INSTRUMENTS & INSTRUMENTATION Metrology and Measurement Systems Pub Date : 2023-07-20 DOI:10.24425/MMS.2019.130567
Yafeng Chen, Qi Huang
{"title":"Adaptive filtering-based current reconstruction in non-contact magnetic sensor array measurement system","authors":"Yafeng Chen, Qi Huang","doi":"10.24425/MMS.2019.130567","DOIUrl":null,"url":null,"abstract":"The non-contact current measurement method with magnetic sensors has become a subject of research. Unfortunately, magnetic sensors fail to distinguish the interested magnetic field from nearby interference and suffer from gauss white noise due to the intrinsic noise of the sensor and external disturbance. In this paper, a novel adaptive filtering-based current reconstruction method with a magnetic sensor array is proposed. Interference-rejection methods based on two classic algorithms, the least-mean-square (LMS) and recursive-least-square (RLS) algorithms, are compared when used in the parallel structure and regular triangle structure of three-phase system. Consequently, the measurement range of RLS-based algorithm is wider than that of LMS-based algorithm. The results of carried out simulations and experiments show that RLS-based algorithms can measure currents with an error of around 1%. Additionally, the RLS-based algorithm can filter the gauss white noise whose magnitude is within 10% of the linear magnetic field range of the sensor.","PeriodicalId":18394,"journal":{"name":"Metrology and Measurement Systems","volume":" ","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2023-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metrology and Measurement Systems","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.24425/MMS.2019.130567","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
引用次数: 0

Abstract

The non-contact current measurement method with magnetic sensors has become a subject of research. Unfortunately, magnetic sensors fail to distinguish the interested magnetic field from nearby interference and suffer from gauss white noise due to the intrinsic noise of the sensor and external disturbance. In this paper, a novel adaptive filtering-based current reconstruction method with a magnetic sensor array is proposed. Interference-rejection methods based on two classic algorithms, the least-mean-square (LMS) and recursive-least-square (RLS) algorithms, are compared when used in the parallel structure and regular triangle structure of three-phase system. Consequently, the measurement range of RLS-based algorithm is wider than that of LMS-based algorithm. The results of carried out simulations and experiments show that RLS-based algorithms can measure currents with an error of around 1%. Additionally, the RLS-based algorithm can filter the gauss white noise whose magnitude is within 10% of the linear magnetic field range of the sensor.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
非接触式磁传感器阵列测量系统中基于自适应滤波的电流重构
磁传感器的非接触式电流测量方法已成为一个研究课题。不幸的是,由于传感器的固有噪声和外部干扰,磁传感器无法将感兴趣的磁场与附近的干扰区分开来,并遭受高斯白噪声的影响。本文提出了一种新的基于自适应滤波的磁传感器阵列电流重构方法。比较了基于最小二乘(LMS)和递归最小二乘(RLS)两种经典算法的干扰抑制方法在三相系统并联结构和正三角形结构中的应用。因此,基于RLS的算法的测量范围比基于LMS的算法的更宽。仿真和实验结果表明,基于RLS的算法可以测量电流,误差约为1%。此外,基于RLS的算法可以滤除幅度在传感器线性磁场范围10%以内的高斯白噪声。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Metrology and Measurement Systems
Metrology and Measurement Systems INSTRUMENTS & INSTRUMENTATION-
CiteScore
2.00
自引率
10.00%
发文量
0
审稿时长
6 months
期刊介绍: Contributions are invited on all aspects of the research, development and applications of the measurement science and technology. The list of topics covered includes: theory and general principles of measurement; measurement of physical, chemical and biological quantities; medical measurements; sensors and transducers; measurement data acquisition; measurement signal transmission; processing and data analysis; measurement systems and embedded systems; design, manufacture and evaluation of instruments. The average publication cycle is 6 months.
期刊最新文献
148534 Selected Technical Issues of Deep Neural Networks for Image Classification Purposes Statistical process control of commercial force-sensing resistors Physical foundations determining spectral characteristics measured in Bragg gratings subjected to bending Anatomical and functional assessment of patency of the upper respiratory tract in selected respiratory disorders – part 2
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1