{"title":"Basic Principles and Applications of Live Cell Microscopy Techniques: A Review","authors":"Tewodros Abere Mekuria, M. Kinde","doi":"10.54203/scil.2022.wvj43","DOIUrl":null,"url":null,"abstract":"Live cell imaging has provided great benefits in studying multiple processes and molecular interactions within and/or between cells. This review aimed to describe the common live cell microscopy techniques and briefly explain their principles and applications. A wide range of microscopic techniques, from conventional transmitted light to an array of fluorescence microscopy techniques, including advanced super-resolution techniques, can be applied for live-cell imaging. Transmitted light microscopy uses focused transmitted light that goes through a condenser to achieve a very high illumination on the specimen. On the other hand, fluorescence microscopy uses reflected light to capture images of cells or molecules that have been fluorescently dyed. Techniques for transmitted light microscopy are simple to use but have poor resolution. Although the resolution of fluorescent microscopy techniques is only approximately 200-300 nm, this is nevertheless an improvement over conventional transmitted methods. Conventional light microscopy’s resolution was improved by the introduction of the super-resolution microscopy technology family. These methods “break” the diffraction limit, enabling fluorescence imaging with resolutions up to ten times higher than those possible with traditional methods. Each live cell imaging method has advantages and drawbacks. The primary deciding criteria for choosing the type of microscope are the study’s objectives, previous experience, the researcher’s interests, and financial viability. Hence, a thorough understanding of the technique and application of the various live-cell microscopy methods is paramount in life science studies.","PeriodicalId":52153,"journal":{"name":"World''s Veterinary Journal","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"World''s Veterinary Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.54203/scil.2022.wvj43","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Veterinary","Score":null,"Total":0}
引用次数: 0
Abstract
Live cell imaging has provided great benefits in studying multiple processes and molecular interactions within and/or between cells. This review aimed to describe the common live cell microscopy techniques and briefly explain their principles and applications. A wide range of microscopic techniques, from conventional transmitted light to an array of fluorescence microscopy techniques, including advanced super-resolution techniques, can be applied for live-cell imaging. Transmitted light microscopy uses focused transmitted light that goes through a condenser to achieve a very high illumination on the specimen. On the other hand, fluorescence microscopy uses reflected light to capture images of cells or molecules that have been fluorescently dyed. Techniques for transmitted light microscopy are simple to use but have poor resolution. Although the resolution of fluorescent microscopy techniques is only approximately 200-300 nm, this is nevertheless an improvement over conventional transmitted methods. Conventional light microscopy’s resolution was improved by the introduction of the super-resolution microscopy technology family. These methods “break” the diffraction limit, enabling fluorescence imaging with resolutions up to ten times higher than those possible with traditional methods. Each live cell imaging method has advantages and drawbacks. The primary deciding criteria for choosing the type of microscope are the study’s objectives, previous experience, the researcher’s interests, and financial viability. Hence, a thorough understanding of the technique and application of the various live-cell microscopy methods is paramount in life science studies.
期刊介绍:
The World''s Veterinary Journal (ISSN 2322-4568) is an international, peer reviewed open access journal aims to publish the high quality material from veterinary scientists'' studies. All accepted articles are published Quarterly in full text on the Internet. WVJ publishes the results of original scientific researches, reviews, case reports and short communications, in all fields of veterinary science. In details, topics are: Behavior Environment and welfare Animal reproduction and production Parasitology Endocrinology Microbiology Immunology Pathology Pharmacology Epidemiology Molecular biology Immunogenetics Surgery Virology Physiology Vaccination Gynecology Exotic animals Animal diseases Radiology Ophthalmology Dermatology Chronic disease Anatomy Non-surgical pathology issues of small to large animals Cardiology and oncology.