NEOPRENE v1.0.1: a Python library for generating spatial rainfall based on the Neyman–Scott process

IF 4 3区 地球科学 Q1 GEOSCIENCES, MULTIDISCIPLINARY Geoscientific Model Development Pub Date : 2023-09-01 DOI:10.5194/gmd-16-5035-2023
J. Díez-Sierra, Salvador Navas, Manuel del Jesus
{"title":"NEOPRENE v1.0.1: a Python library for generating spatial rainfall based on the Neyman–Scott process","authors":"J. Díez-Sierra, Salvador Navas, Manuel del Jesus","doi":"10.5194/gmd-16-5035-2023","DOIUrl":null,"url":null,"abstract":"Abstract. Long time series of rainfall at different levels of aggregation (daily or hourly in most cases) constitute the basic input for hydrological, hydraulic and climate studies. However, oftentimes the length, completeness, time resolution or spatial coverage of the available records falls short of the minimum requirements to build robust estimations. Here, we introduce NEOPRENE, a Python library to generate synthetic time series of rainfall. NEOPRENE simulates multi-site synthetic rainfall that reproduces observed statistics at different time aggregations. Three case studies exemplify the use of the library, focusing on extreme rainfall, as well as on disaggregating daily rainfall observations into hourly rainfall records. NEOPRENE is distributed from GitHub with an open license (GPLv3), free for research and commercial purposes alike. We also provide Jupyter notebooks with the example use cases to promote its adoption by researchers and practitioners involved in vulnerability, impact and adaptation studies.\n","PeriodicalId":12799,"journal":{"name":"Geoscientific Model Development","volume":" ","pages":""},"PeriodicalIF":4.0000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geoscientific Model Development","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.5194/gmd-16-5035-2023","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 2

Abstract

Abstract. Long time series of rainfall at different levels of aggregation (daily or hourly in most cases) constitute the basic input for hydrological, hydraulic and climate studies. However, oftentimes the length, completeness, time resolution or spatial coverage of the available records falls short of the minimum requirements to build robust estimations. Here, we introduce NEOPRENE, a Python library to generate synthetic time series of rainfall. NEOPRENE simulates multi-site synthetic rainfall that reproduces observed statistics at different time aggregations. Three case studies exemplify the use of the library, focusing on extreme rainfall, as well as on disaggregating daily rainfall observations into hourly rainfall records. NEOPRENE is distributed from GitHub with an open license (GPLv3), free for research and commercial purposes alike. We also provide Jupyter notebooks with the example use cases to promote its adoption by researchers and practitioners involved in vulnerability, impact and adaptation studies.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
NEOPRENE v1.0.1:一个基于Neyman-Scott过程生成空间降雨的Python库
摘要不同聚集水平的长时间降雨序列(大多数情况下为每日或每小时)构成水文、水力和气候研究的基本输入。然而,可用记录的长度、完整性、时间分辨率或空间覆盖范围往往达不到构建可靠估计的最低要求。在这里,我们介绍一个Python库NEOPRENE,它可以生成降雨的合成时间序列。NEOPRENE模拟多地点合成降雨,再现在不同时间聚集的观测统计数据。三个案例研究举例说明了图书馆的使用,重点是极端降雨,以及将每日降雨量观测分解为每小时降雨量记录。NEOPRENE以开放许可(GPLv3)从GitHub发布,免费用于研究和商业目的。我们还为Jupyter笔记本提供了示例用例,以促进涉及脆弱性、影响和适应研究的研究人员和实践者采用Jupyter笔记本。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Geoscientific Model Development
Geoscientific Model Development GEOSCIENCES, MULTIDISCIPLINARY-
CiteScore
8.60
自引率
9.80%
发文量
352
审稿时长
6-12 weeks
期刊介绍: Geoscientific Model Development (GMD) is an international scientific journal dedicated to the publication and public discussion of the description, development, and evaluation of numerical models of the Earth system and its components. The following manuscript types can be considered for peer-reviewed publication: * geoscientific model descriptions, from statistical models to box models to GCMs; * development and technical papers, describing developments such as new parameterizations or technical aspects of running models such as the reproducibility of results; * new methods for assessment of models, including work on developing new metrics for assessing model performance and novel ways of comparing model results with observational data; * papers describing new standard experiments for assessing model performance or novel ways of comparing model results with observational data; * model experiment descriptions, including experimental details and project protocols; * full evaluations of previously published models.
期刊最新文献
Enabling high-performance cloud computing for the Community Multiscale Air Quality Model (CMAQ) version 5.3.3: performance evaluation and benefits for the user community. Impacts of updated reaction kinetics on the global GEOS-Chem simulation of atmospheric chemistry. Understanding changes in cloud simulations from E3SM version 1 to version 2 Development of inter-grid-cell lateral unsaturated and saturated flow model in the E3SM Land Model (v2.0) WRF (v4.0)–SUEWS (v2018c) coupled system: development, evaluation and application
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1