{"title":"A Distributed and Privacy-Aware High-Throughput Transaction Scheduling Approach for Scaling Blockchain","authors":"Xiaoyu Qiu, Wuhui Chen, Bingxin Tang, Junyuan Liang, Hongning Dai, Zibin Zheng","doi":"10.1109/TDSC.2022.3216571","DOIUrl":null,"url":null,"abstract":"Payment channel networks (PCNs) are considered as a prominent solution for scaling blockchain, where users can establish payment channels and complete transactions in an off-chain manner. However, it is non-trivial to schedule transactions in PCNs and most existing routing algorithms suffer from the following challenges: 1) one-shot optimization, 2) privacy-invasive channel probing, 3) vulnerability to DoS attacks. To address these challenges, we propose a privacy-aware transaction scheduling algorithm with defence against DoS attacks based on deep reinforcement learning (DRL), namely PTRD. Specifically, considering both the privacy preservation and long-term throughput into the optimization criteria, we formulate the transaction-scheduling problem as a Constrained Markov Decision Process. We then design PTRD, which extends off-the-shelf DRL algorithms to constrained optimization with an additional cost critic-network and an adaptive Lagrangian multiplier. Moreover, considering the distribution nature of PCNs, in which each user schedules transactions independently, we develop a distributed training framework to collect the knowledge learned by each agent so as to enhance learning effectiveness. With the customized network design and the distributed training framework, PTRD achieves a good balance between the optimization of the throughput and the minimization of privacy risks. Evaluations show that PTRD outperforms the state-of-the-art PCN routing algorithms by 2.7%–62.5% in terms of the long-term throughput while satisfying privacy constraints.","PeriodicalId":13047,"journal":{"name":"IEEE Transactions on Dependable and Secure Computing","volume":"20 1","pages":"4372-4386"},"PeriodicalIF":7.0000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Dependable and Secure Computing","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1109/TDSC.2022.3216571","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 3
Abstract
Payment channel networks (PCNs) are considered as a prominent solution for scaling blockchain, where users can establish payment channels and complete transactions in an off-chain manner. However, it is non-trivial to schedule transactions in PCNs and most existing routing algorithms suffer from the following challenges: 1) one-shot optimization, 2) privacy-invasive channel probing, 3) vulnerability to DoS attacks. To address these challenges, we propose a privacy-aware transaction scheduling algorithm with defence against DoS attacks based on deep reinforcement learning (DRL), namely PTRD. Specifically, considering both the privacy preservation and long-term throughput into the optimization criteria, we formulate the transaction-scheduling problem as a Constrained Markov Decision Process. We then design PTRD, which extends off-the-shelf DRL algorithms to constrained optimization with an additional cost critic-network and an adaptive Lagrangian multiplier. Moreover, considering the distribution nature of PCNs, in which each user schedules transactions independently, we develop a distributed training framework to collect the knowledge learned by each agent so as to enhance learning effectiveness. With the customized network design and the distributed training framework, PTRD achieves a good balance between the optimization of the throughput and the minimization of privacy risks. Evaluations show that PTRD outperforms the state-of-the-art PCN routing algorithms by 2.7%–62.5% in terms of the long-term throughput while satisfying privacy constraints.
期刊介绍:
The "IEEE Transactions on Dependable and Secure Computing (TDSC)" is a prestigious journal that publishes high-quality, peer-reviewed research in the field of computer science, specifically targeting the development of dependable and secure computing systems and networks. This journal is dedicated to exploring the fundamental principles, methodologies, and mechanisms that enable the design, modeling, and evaluation of systems that meet the required levels of reliability, security, and performance.
The scope of TDSC includes research on measurement, modeling, and simulation techniques that contribute to the understanding and improvement of system performance under various constraints. It also covers the foundations necessary for the joint evaluation, verification, and design of systems that balance performance, security, and dependability.
By publishing archival research results, TDSC aims to provide a valuable resource for researchers, engineers, and practitioners working in the areas of cybersecurity, fault tolerance, and system reliability. The journal's focus on cutting-edge research ensures that it remains at the forefront of advancements in the field, promoting the development of technologies that are critical for the functioning of modern, complex systems.