Multi-UAV Cooperative Trajectory Planning Based on Many-Objective Evolutionary Algorithm

Hui Bai;Tian Fan;Yuan Niu;Zhihua Cui
{"title":"Multi-UAV Cooperative Trajectory Planning Based on Many-Objective Evolutionary Algorithm","authors":"Hui Bai;Tian Fan;Yuan Niu;Zhihua Cui","doi":"10.23919/CSMS.2022.0006","DOIUrl":null,"url":null,"abstract":"The trajectory planning of multiple unmanned aerial vehicles (UAVs) is the core of efficient UAV mission execution. Existing studies have mainly transformed this problem into a single-objective optimization problem using a single metric to evaluate multi-UAV trajectory planning methods. However, multi-UAV trajectory planning evolves into a many-objective optimization problem due to the complexity of the demand and the environment. Therefore, a multi-UAV cooperative trajectory planning model based on many-objective optimization is proposed to optimize trajectory distance, trajectory time, trajectory threat, and trajectory coordination distance costs of UAVs. The NSGA-III algorithm, which overcomes the problems of traditional trajectory planning, is used to solve the model. This paper also designs a segmented crossover strategy and introduces dynamic crossover probability in the crossover operator to improve the solving efficiency of the model and accelerate the convergence speed of the algorithm. Experimental results prove the effectiveness of the multi-UAV cooperative trajectory planning algorithm, thereby addressing different actual needs.","PeriodicalId":65786,"journal":{"name":"复杂系统建模与仿真(英文)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/iel7/9420428/9841527/09841533.pdf","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"复杂系统建模与仿真(英文)","FirstCategoryId":"1089","ListUrlMain":"https://ieeexplore.ieee.org/document/9841533/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

The trajectory planning of multiple unmanned aerial vehicles (UAVs) is the core of efficient UAV mission execution. Existing studies have mainly transformed this problem into a single-objective optimization problem using a single metric to evaluate multi-UAV trajectory planning methods. However, multi-UAV trajectory planning evolves into a many-objective optimization problem due to the complexity of the demand and the environment. Therefore, a multi-UAV cooperative trajectory planning model based on many-objective optimization is proposed to optimize trajectory distance, trajectory time, trajectory threat, and trajectory coordination distance costs of UAVs. The NSGA-III algorithm, which overcomes the problems of traditional trajectory planning, is used to solve the model. This paper also designs a segmented crossover strategy and introduces dynamic crossover probability in the crossover operator to improve the solving efficiency of the model and accelerate the convergence speed of the algorithm. Experimental results prove the effectiveness of the multi-UAV cooperative trajectory planning algorithm, thereby addressing different actual needs.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于多目标进化算法的多无人机协同轨迹规划
多架无人机的飞行轨迹规划是无人机高效执行任务的核心。现有的研究主要是将该问题转化为单目标优化问题,使用单一度量来评估多无人机的轨迹规划方法。然而,由于需求和环境的复杂性,多无人机的轨迹规划演变为一个多目标优化问题。为此,提出了一种基于多目标优化的多无人机协同轨迹规划模型,对无人机的轨迹距离、轨迹时间、轨迹威胁和轨迹协调距离成本进行优化。采用NSGA-III算法求解该模型,克服了传统轨迹规划算法存在的问题。设计了分段交叉策略,并在交叉算子中引入动态交叉概率,提高了模型的求解效率,加快了算法的收敛速度。实验结果证明了多无人机协同轨迹规划算法的有效性,从而满足了不同的实际需求。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
7.80
自引率
0.00%
发文量
0
期刊最新文献
Front Cover Contents Research on Digital Twin System Platform Framework and Key Technologies of Unmanned Ground Equipment Hierarchical Disturbance Propagation Mechanism and Improved Contract Net Protocol for Satellite TT&C Resource Dynamic Scheduling Modeling and Analysis of Risk Propagation and Loss Causing Capacity for Key Nodes in Cyber-Physical Coupled Power Network
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1