Capturing Herder: a three-step approach to the identification of language ideologies using corpus linguistics and critical discourse analysis

IF 0.8 Q3 LINGUISTICS Corpora Pub Date : 2021-04-01 DOI:10.3366/COR.2021.0209
Adnan Ajšić
{"title":"Capturing Herder: a three-step approach to the identification of language ideologies using corpus linguistics and critical discourse analysis","authors":"Adnan Ajšić","doi":"10.3366/COR.2021.0209","DOIUrl":null,"url":null,"abstract":"Recent lexical approaches to the identification of language ideologies focus on the application of quantitative corpus-linguistic techniques to large data sets as a way to minimise researcher inference and ensure more objective sampling methods, replicability of analytical procedures, and a higher degree of generalisability ( Fitzsimmons-Doolan, 2014 ; Subtirelu, 2015 ; Vessey, 2017 ; Wright and Brooks, 2019 ; and McEntee-Atalianis and Vessey, 2020 ). Based on two comprehensive, specialised research (11.6 million words) and comparator (22.4 million words) newspaper corpora, this study offers an examination of the effectiveness of the multivariate and univariate statistical techniques, and proposes a three-step approach whereby corpus linguistics and critical discourse analysis are combined to identify ( 1) thematic and ( 2) ideological discourses (cf. ‘d’/’D’ discourses; Gee, 2010 ), and ( 3) language ideologies. In contrast to recent contributions, it is argued that item frequency is not necessarily a reliable or effective indicator of language ideologies but, rather, of language-related discourses which can be examined for implicit and explicit language-ideological content. A combination of multivariate and univariate statistical techniques, and the three-step approach are shown to be a highly effective methodological solution for synchronic and diachronic language ideology and discourse research based on topically/discursively heterogeneous corpora.","PeriodicalId":44933,"journal":{"name":"Corpora","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2021-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Corpora","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3366/COR.2021.0209","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"LINGUISTICS","Score":null,"Total":0}
引用次数: 2

Abstract

Recent lexical approaches to the identification of language ideologies focus on the application of quantitative corpus-linguistic techniques to large data sets as a way to minimise researcher inference and ensure more objective sampling methods, replicability of analytical procedures, and a higher degree of generalisability ( Fitzsimmons-Doolan, 2014 ; Subtirelu, 2015 ; Vessey, 2017 ; Wright and Brooks, 2019 ; and McEntee-Atalianis and Vessey, 2020 ). Based on two comprehensive, specialised research (11.6 million words) and comparator (22.4 million words) newspaper corpora, this study offers an examination of the effectiveness of the multivariate and univariate statistical techniques, and proposes a three-step approach whereby corpus linguistics and critical discourse analysis are combined to identify ( 1) thematic and ( 2) ideological discourses (cf. ‘d’/’D’ discourses; Gee, 2010 ), and ( 3) language ideologies. In contrast to recent contributions, it is argued that item frequency is not necessarily a reliable or effective indicator of language ideologies but, rather, of language-related discourses which can be examined for implicit and explicit language-ideological content. A combination of multivariate and univariate statistical techniques, and the three-step approach are shown to be a highly effective methodological solution for synchronic and diachronic language ideology and discourse research based on topically/discursively heterogeneous corpora.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
捕捉牧人:使用语料库语言学和批评话语分析的语言意识形态识别的三步方法
最近识别语言意识形态的词汇方法侧重于将定量语料库语言学技术应用于大数据集,以最大限度地减少研究人员的推断,并确保更客观的采样方法、分析程序的可复制性,以及更高程度的通用性(Fitzsimmons Doolan,2014;Subtirelu,2015;Vessey,2017;Wright和Brooks,2019;以及McEntee Atalianis和Vessey(2020)。本研究基于两项全面、专业的研究(1160万字)和比较(2240万字的)报纸语料库,对多元和单变量统计技术的有效性进行了检验,并提出了一种三步走的方法,将语料库语言学和批判性话语分析相结合,以识别(1)主题话语和(2)意识形态话语(参见“d”/“d”话语;Gee,2010)和(3)语言意识形态。与最近的贡献相反,有人认为,项目频率不一定是语言意识形态的可靠或有效指标,而是与语言相关的话语的指标,可以检查语言意识形态的内隐和外显内容。多元和单变量统计技术的结合以及三步法被证明是基于主题/话语异质语料库的共时和历时语言意识形态和话语研究的高效方法论解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Corpora
Corpora LINGUISTICS-
CiteScore
1.70
自引率
0.00%
发文量
20
期刊最新文献
Introducing the Swedish Learner English Corpus: a corpus that enables investigations of the impact of extramural activities on L2 writing Exploring part of speech (pos) tag sequences in a large-scale learner corpus of L2 English: a developmental perspective Review: Barth and Schnell. 2022. Understanding Corpus Linguistics. New York: Routledge The Video Game Dialogue Corpus Developing a multimodal corpus of L2 academic English from an English medium of instruction university in China
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1