Norm-constrained Score-level Ensemble for Spoofing Aware Speaker Verification

Peng Zhang, Peng Hu, Xueliang Zhang
{"title":"Norm-constrained Score-level Ensemble for Spoofing Aware Speaker Verification","authors":"Peng Zhang, Peng Hu, Xueliang Zhang","doi":"10.21437/interspeech.2022-470","DOIUrl":null,"url":null,"abstract":"In this paper, we present the Elevoc systems submitted to the Spoofing Aware Speaker Verification Challenge (SASVC) 2022. Our submissions focus on bridge the gap between the automatic speaker verification (ASV) and countermeasure (CM) systems. We investigate a general and efficient norm-constrained score-level ensemble method which jointly processes the scores extracted from ASV and CM subsystems, improving robustness to both zero-effect imposters and spoof-ing attacks. Furthermore, we explore that the ensemble system can provide better performance when both ASV and CM subsystems are optimized. Experimental results show that our primary system yields 0.45% SV-EER, 0.26% SPF-EER and 0.37% SASV-EER, and obtains more than 96.08%, 66.67% and 94.19% relative improvements over the best performing baseline systems on the SASVC 2022 evaluation set. All of our code and pre-trained models weights are publicly available and reproducible 1 .","PeriodicalId":73500,"journal":{"name":"Interspeech","volume":"1 1","pages":"4371-4375"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Interspeech","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21437/interspeech.2022-470","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

In this paper, we present the Elevoc systems submitted to the Spoofing Aware Speaker Verification Challenge (SASVC) 2022. Our submissions focus on bridge the gap between the automatic speaker verification (ASV) and countermeasure (CM) systems. We investigate a general and efficient norm-constrained score-level ensemble method which jointly processes the scores extracted from ASV and CM subsystems, improving robustness to both zero-effect imposters and spoof-ing attacks. Furthermore, we explore that the ensemble system can provide better performance when both ASV and CM subsystems are optimized. Experimental results show that our primary system yields 0.45% SV-EER, 0.26% SPF-EER and 0.37% SASV-EER, and obtains more than 96.08%, 66.67% and 94.19% relative improvements over the best performing baseline systems on the SASVC 2022 evaluation set. All of our code and pre-trained models weights are publicly available and reproducible 1 .
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于欺骗感知说话人验证的规范约束分数级集成
在本文中,我们介绍了提交给2022年Spoo fing Aware扬声器验证挑战赛(SASVC)的Elevoc系统。我们提交的材料重点是弥合自动扬声器验证(ASV)和对抗(CM)系统之间的差距。我们研究了一种通用且有效的范数约束分数级集成方法,该方法联合处理从ASV和CM子系统提取的分数,提高了对零效果冒名顶替和欺骗攻击的鲁棒性。此外,我们探索了当ASV和CM子系统都被优化时,集成系统可以提供更好的性能。实验结果表明,我们的主要系统产生了0.45%SV-EER、0.26%SPF-EER和0.37%SASV-EER,并在SASVC 2022评估集上获得了超过96.08%、66.67%和94.19%的相对改进。我们所有的代码和预先训练的模型权重都是公开的,并且是可复制的1。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Contrastive Learning Approach for Assessment of Phonological Precision in Patients with Tongue Cancer Using MRI Data. Remote Assessment for ALS using Multimodal Dialog Agents: Data Quality, Feasibility and Task Compliance. Pronunciation modeling of foreign words for Mandarin ASR by considering the effect of language transfer VCSE: Time-Domain Visual-Contextual Speaker Extraction Network Induce Spoken Dialog Intents via Deep Unsupervised Context Contrastive Clustering
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1