Paralel Spatial Pyramid Convolutional Neural Network untuk Verifikasi Kekerabatan berbasis Citra Wajah

Reza Fuad Rachmadi, I. Purnama
{"title":"Paralel Spatial Pyramid Convolutional Neural Network untuk Verifikasi Kekerabatan berbasis Citra Wajah","authors":"Reza Fuad Rachmadi, I. Purnama","doi":"10.14710/JTSISKOM.6.4.2018.152-157","DOIUrl":null,"url":null,"abstract":"In this paper, we proposed a parallel spatial pyramid CNN classifier for image-based kinship verification problem. Two face images that compared for kinship verification treated as input for each parallel convolutional network of our classifier. Each parallel convolutional network constructed using spatial pyramid CNN classifier. At the end of the convolutional network, we use three fully connected layers to combine each spatial pyramid CNN features and decided the final kinship prediction. We tested the proposed classifier using large-scale kinship verification dataset, called FIW dataset, consists of seven kinship problems from 1,000 families. In our approach, we treated each kinship problem as a binary classification problem with two output. We train our classifier separately for each kinship problem with same training configuration. Overall, our proposed method can achieve an average accuracy of more than 60% and outperform the baseline method.","PeriodicalId":56231,"journal":{"name":"Jurnal Teknologi dan Sistem Komputer","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jurnal Teknologi dan Sistem Komputer","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14710/JTSISKOM.6.4.2018.152-157","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

In this paper, we proposed a parallel spatial pyramid CNN classifier for image-based kinship verification problem. Two face images that compared for kinship verification treated as input for each parallel convolutional network of our classifier. Each parallel convolutional network constructed using spatial pyramid CNN classifier. At the end of the convolutional network, we use three fully connected layers to combine each spatial pyramid CNN features and decided the final kinship prediction. We tested the proposed classifier using large-scale kinship verification dataset, called FIW dataset, consists of seven kinship problems from 1,000 families. In our approach, we treated each kinship problem as a binary classification problem with two output. We train our classifier separately for each kinship problem with same training configuration. Overall, our proposed method can achieve an average accuracy of more than 60% and outperform the baseline method.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于图像关系验证的并行空间金字塔卷积神经网络
本文针对基于图像的亲属关系验证问题,提出了一种并行的空间金字塔CNN分类器。比较亲属关系验证的两个人脸图像被视为我们分类器的每个并行卷积网络的输入。每个并行卷积网络使用空间金字塔CNN分类器构建。在卷积网络的最后,我们使用三个完全连接的层来组合每个空间金字塔的CNN特征,并决定最终的亲缘关系预测。我们使用大规模亲属关系验证数据集(称为FIW数据集)测试了所提出的分类器,该数据集由来自1000个家庭的7个亲属关系问题组成。在我们的方法中,我们将每个亲属关系问题视为具有两个输出的二元分类问题。我们用相同的训练配置分别为每个亲属关系问题训练分类器。总体而言,我们提出的方法可以实现60%以上的平均精度,并且优于基线方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
6
审稿时长
6 weeks
期刊最新文献
TATOPSIS: A decision support system for selecting a major in university with a two-way approach and TOPSIS Regional clustering based on economic potential with a modified fuzzy k-prototypes algorithm for village developing target determination River water level measurement system using Sobel edge detection method Classification of beneficiaries for the rehabilitation of uninhabitable houses using the K-Nearest Neighbor algorithm Sequence-based prediction of protein-protein interaction using autocorrelation features and machine learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1