Improvements in tropical cyclone forecasting through ensemble prediction system at NCMRWF in India

IF 2.4 4区 地球科学 Q3 METEOROLOGY & ATMOSPHERIC SCIENCES Tropical Cyclone Research and Review Pub Date : 2020-06-01 DOI:10.1016/j.tcrr.2020.04.003
Anumeha Dube, Raghavendra Ashrit, Sushant Kumar, Ashu Mamgain
{"title":"Improvements in tropical cyclone forecasting through ensemble prediction system at NCMRWF in India","authors":"Anumeha Dube,&nbsp;Raghavendra Ashrit,&nbsp;Sushant Kumar,&nbsp;Ashu Mamgain","doi":"10.1016/j.tcrr.2020.04.003","DOIUrl":null,"url":null,"abstract":"<div><p>This paper deals with the comparison of cyclone forecasts from the two versions of the operational global ensemble prediction system (EPS) at the National Centre for Medium Range Weather Forecasting (NEPS). The previous version had a horizontal resolution of 33 km with 44 ensemble members (NEPS) whereas the updated version of this EPS has a resolution of 12 km with 11 members (NEPS-UP). The ensemble mean forecasts from both the models are compared using the direct position (DPE), along (ATE) and cross track (CTE) errors. For the verification of strike probability, Brier Score (BS), Brier Skill Score (BSS), Reliability Diagram, Relative Operating Characteristic (ROC) Curve and Root Mean Square Error (RMSE) in mean Vs Spread in members are used. For verification of intensity, RMSE in maximum wind speed from the ensemble mean forecasts are compared.</p><p>Comparison of ensemble mean tracks from both models showed lower errors in NEPS-UP for all forecast lead times. The decrease in the DPE, ATE and CTE in NEPS-UP was around 38%, 48% and 15% respectively. NEPS-UP showed lower BS and higher BSS values indicating a better match between observed frequencies and forecast probabilities as well as higher prediction skills. The reliability diagram showed higher accuracy for NEPS-UP as compared to NEPS. The ROC curves showed that for forecasts with higher probabilities the hit rate was high in NEPS-UP. There was a greater consensus between the RMSE and Spread for NEPS-UP at all lead times. It was also seen that the RMSE in mean showed a 41% decrease from NEPS to NEPS-UP. On comparing maximum wind, it was found that for all lead times the RMSE in maximum wind speed for NEPS-UP was lower than NEPS.</p></div>","PeriodicalId":44442,"journal":{"name":"Tropical Cyclone Research and Review","volume":"9 2","pages":"Pages 106-116"},"PeriodicalIF":2.4000,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.tcrr.2020.04.003","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tropical Cyclone Research and Review","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2225603220300175","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 8

Abstract

This paper deals with the comparison of cyclone forecasts from the two versions of the operational global ensemble prediction system (EPS) at the National Centre for Medium Range Weather Forecasting (NEPS). The previous version had a horizontal resolution of 33 km with 44 ensemble members (NEPS) whereas the updated version of this EPS has a resolution of 12 km with 11 members (NEPS-UP). The ensemble mean forecasts from both the models are compared using the direct position (DPE), along (ATE) and cross track (CTE) errors. For the verification of strike probability, Brier Score (BS), Brier Skill Score (BSS), Reliability Diagram, Relative Operating Characteristic (ROC) Curve and Root Mean Square Error (RMSE) in mean Vs Spread in members are used. For verification of intensity, RMSE in maximum wind speed from the ensemble mean forecasts are compared.

Comparison of ensemble mean tracks from both models showed lower errors in NEPS-UP for all forecast lead times. The decrease in the DPE, ATE and CTE in NEPS-UP was around 38%, 48% and 15% respectively. NEPS-UP showed lower BS and higher BSS values indicating a better match between observed frequencies and forecast probabilities as well as higher prediction skills. The reliability diagram showed higher accuracy for NEPS-UP as compared to NEPS. The ROC curves showed that for forecasts with higher probabilities the hit rate was high in NEPS-UP. There was a greater consensus between the RMSE and Spread for NEPS-UP at all lead times. It was also seen that the RMSE in mean showed a 41% decrease from NEPS to NEPS-UP. On comparing maximum wind, it was found that for all lead times the RMSE in maximum wind speed for NEPS-UP was lower than NEPS.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
印度NCMRWF集合预报系统对热带气旋预报的改进
本文比较了国家中期天气预报中心(NEPS)全球综合预报系统(EPS)两个版本的气旋预报结果。先前版本的水平分辨率为33 km,有44个整体成员(NEPS),而更新版本的EPS分辨率为12 km,有11个整体成员(NEPS- up)。使用直接位置误差(DPE)、沿程误差(ATE)和交叉轨道误差(CTE)比较了两种模式的集合平均预报。为了验证罢工概率,使用了Brier分数(BS)、Brier技能分数(BSS)、信度图、相对操作特征(ROC)曲线和成员平均Vs差的均方根误差(RMSE)。为了验证强度,比较了集合平均预报的最大风速RMSE。两种模式的总体平均轨迹比较表明,在所有预测提前期中,nepup的误差较低。DPE、ATE和CTE分别下降38%、48%和15%左右。nep - up的观测频率与预测概率的匹配程度较高,预测能力较强。可靠性图显示,与NEPS相比,NEPS的精度更高。ROC曲线显示,对于概率较高的预测,在np - up中命中率较高。在所有的前置时间内,RMSE和Spread之间有更大的共识。从NEPS到NEPS- up,平均RMSE下降了41%。通过比较最大风速,发现在所有提前时间内,NEPS- up的最大风速RMSE都小于NEPS。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Tropical Cyclone Research and Review
Tropical Cyclone Research and Review METEOROLOGY & ATMOSPHERIC SCIENCES-
CiteScore
4.60
自引率
3.40%
发文量
184
审稿时长
30 weeks
期刊介绍: Tropical Cyclone Research and Review is an international journal focusing on tropical cyclone monitoring, forecasting, and research as well as associated hydrological effects and disaster risk reduction. This journal is edited and published by the ESCAP/WMO Typhoon Committee (TC) and the Shanghai Typhoon Institute of the China Meteorology Administration (STI/CMA). Contributions from all tropical cyclone basins are welcome. Scope of the journal includes: • Reviews of tropical cyclones exhibiting unusual characteristics or behavior or resulting in disastrous impacts on Typhoon Committee Members and other regional WMO bodies • Advances in applied and basic tropical cyclone research or technology to improve tropical cyclone forecasts and warnings • Basic theoretical studies of tropical cyclones • Event reports, compelling images, and topic review reports of tropical cyclones • Impacts, risk assessments, and risk management techniques related to tropical cyclones
期刊最新文献
Discussion on the enhancement of Typhoon Committee activities for UN EW4All initiative Analyzing coherent structures in the tropical cyclone boundary layer using large eddy simulations Analysis of characteristics and evaluation of forecast accuracy for Super Typhoon Doksuri (2023) Case study of high waves in the South Pacific generated by Tropical Cyclone Harold in 2020 A theoretical method to characterize the resistance effects of nonflat terrain on wind fields in a parametric wind field model for tropical cyclones
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1