I. V. Falina, N. A. Kononenko, S. A. Shkirskaya, O. A. Demina, Yu. M. Volfkovich, V. E. Sosenkin, M. V. Gritsay
{"title":"Experimental and Theoretical Study of Influence of Nature of Counterion on Electroosmotic Water Transport in Sulfonated Cation-Exchange Membranes","authors":"I. V. Falina, N. A. Kononenko, S. A. Shkirskaya, O. A. Demina, Yu. M. Volfkovich, V. E. Sosenkin, M. V. Gritsay","doi":"10.1134/S2517751622050043","DOIUrl":null,"url":null,"abstract":"<p>The free solvent transport number in an MF-4SK perfluorinated membrane in solutions of alkaline metal chlorides and hydrochloric acid is for the first time calculated within the framework of a capillary model based on the data of standard contact porosimetry and membrane conductometry. The reasons for the change in the structural characteristics and specific conductivity upon varying the nature of the counterion are discussed. The portion of through mesopores in MF-4SK homogeneous and MK-40 heterogeneous sulfonated cation-exchange membranes is estimated using the experimental data on the water transport numbers in solutions of electrolytes of different natures.</p>","PeriodicalId":700,"journal":{"name":"Membranes and Membrane Technologies","volume":"4 5","pages":"281 - 289"},"PeriodicalIF":2.0000,"publicationDate":"2022-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Membranes and Membrane Technologies","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1134/S2517751622050043","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The free solvent transport number in an MF-4SK perfluorinated membrane in solutions of alkaline metal chlorides and hydrochloric acid is for the first time calculated within the framework of a capillary model based on the data of standard contact porosimetry and membrane conductometry. The reasons for the change in the structural characteristics and specific conductivity upon varying the nature of the counterion are discussed. The portion of through mesopores in MF-4SK homogeneous and MK-40 heterogeneous sulfonated cation-exchange membranes is estimated using the experimental data on the water transport numbers in solutions of electrolytes of different natures.
期刊介绍:
The journal Membranes and Membrane Technologies publishes original research articles and reviews devoted to scientific research and technological advancements in the field of membranes and membrane technologies, including the following main topics:novel membrane materials and creation of highly efficient polymeric and inorganic membranes;hybrid membranes, nanocomposites, and nanostructured membranes;aqueous and nonaqueous filtration processes (micro-, ultra-, and nanofiltration; reverse osmosis);gas separation;electromembrane processes and fuel cells;membrane pervaporation and membrane distillation;membrane catalysis and membrane reactors;water desalination and wastewater treatment;hybrid membrane processes;membrane sensors;membrane extraction and membrane emulsification;mathematical simulation of porous structures and membrane separation processes;membrane characterization;membrane technologies in industry (energy, mineral extraction, pharmaceutics and medicine, chemistry and petroleum chemistry, food industry, and others);membranes and protection of environment (“green chemistry”).The journal has been published in Russian already for several years, English translations of the content used to be integrated in the journal Petroleum Chemistry. This journal is a split off with additional topics.