{"title":"Tribological performance of DLC/DLC and steel/DLC contacts in the presence of additivated oil","authors":"A. Mannan, M. Sabri, M. Kalam, M. Hassan","doi":"10.1504/IJSURFSE.2018.10011258","DOIUrl":null,"url":null,"abstract":"In this study, the tribological properties of ta-C DLC were largely influenced by the counter surfaces and additives. The DLC/DLC contact showed approximately 60% lower wear when tested with additivated oil compared to that of base oil and this result was 66% in steel/DLC contact. Friction coefficient in DLC/DLC contact was lower than in steel/DLC contact under both oils. But however, both contacts showed slightly higher friction coefficient under additivated oil compared to that of base oil. In steel/DLC, the thermo-chemical reaction between carbon and iron and/or the fusion of the transferred particles were prevented by additives which were present under base oil. The fracture found on DLC surface in steel/DLC contact under additivated oil indicates that the tribolayer formed on the steel surface would be of brittle nature. The passivation of surfaces in DLC/DLC contact by additives prevented the damage which was observed under base oil.","PeriodicalId":14460,"journal":{"name":"International Journal of Surface Science and Engineering","volume":"12 1","pages":"60"},"PeriodicalIF":1.0000,"publicationDate":"2018-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Surface Science and Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1504/IJSURFSE.2018.10011258","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 5
Abstract
In this study, the tribological properties of ta-C DLC were largely influenced by the counter surfaces and additives. The DLC/DLC contact showed approximately 60% lower wear when tested with additivated oil compared to that of base oil and this result was 66% in steel/DLC contact. Friction coefficient in DLC/DLC contact was lower than in steel/DLC contact under both oils. But however, both contacts showed slightly higher friction coefficient under additivated oil compared to that of base oil. In steel/DLC, the thermo-chemical reaction between carbon and iron and/or the fusion of the transferred particles were prevented by additives which were present under base oil. The fracture found on DLC surface in steel/DLC contact under additivated oil indicates that the tribolayer formed on the steel surface would be of brittle nature. The passivation of surfaces in DLC/DLC contact by additives prevented the damage which was observed under base oil.
期刊介绍:
IJSurfSE publishes refereed quality papers in the broad field of surface science and engineering including tribology, but with a special emphasis on the research and development in friction, wear, coatings and surface modification processes such as surface treatment, cladding, machining, polishing and grinding, across multiple scales from nanoscopic to macroscopic dimensions. High-integrity and high-performance surfaces of components have become a central research area in the professional community whose aim is to develop highly reliable ultra-precision devices.