{"title":"INFLUENCE OF COLD ROLLING PROCESS ON MICROSTRUCTURE AND MECHANICAL PROPERTIES OF AISI 304 STEEL","authors":"A. Kurc-Lisiecka","doi":"10.54684/ijmmt.2023.15.1.7","DOIUrl":null,"url":null,"abstract":"The performed investigations concerned the influence of degree and temperature of deformation on the microstructure and mechanical properties of metastable austenite in 304 stainless steel after its strain-induced martensitic transformation. Samples of steel strip were cold-rolled within the degree of deformation from 20% to 70% and stretched at room and cryogenic temperature. The microstructure was observed by means of a scanning electron microscopy (SEM) and transmission electron microscopy (TEM). It has been found that in samples stretched at a temperature of -100C and -196C microstructure of the matrix displayed a considerable density of dislocations with lath areas of the martensite ’ and precipitations of carbides M23C6. Fractographic examinations permitted to determine the influence of the deformation temperature on the character of the fracture of investigated steel obtained during the decohesion of samples in a tensile test at room and cryogenic temperature. After cold rolling and tensile test at room temperature the samples have transcrystalline ductile fracture. However, after the plastic deformation at cryogenic temperature, ductile facture with characteristic smooth areas with traces of plastic deformation of the surface and numerous craters were observed.","PeriodicalId":38009,"journal":{"name":"International Journal of Modern Manufacturing Technologies","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Modern Manufacturing Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.54684/ijmmt.2023.15.1.7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0
Abstract
The performed investigations concerned the influence of degree and temperature of deformation on the microstructure and mechanical properties of metastable austenite in 304 stainless steel after its strain-induced martensitic transformation. Samples of steel strip were cold-rolled within the degree of deformation from 20% to 70% and stretched at room and cryogenic temperature. The microstructure was observed by means of a scanning electron microscopy (SEM) and transmission electron microscopy (TEM). It has been found that in samples stretched at a temperature of -100C and -196C microstructure of the matrix displayed a considerable density of dislocations with lath areas of the martensite ’ and precipitations of carbides M23C6. Fractographic examinations permitted to determine the influence of the deformation temperature on the character of the fracture of investigated steel obtained during the decohesion of samples in a tensile test at room and cryogenic temperature. After cold rolling and tensile test at room temperature the samples have transcrystalline ductile fracture. However, after the plastic deformation at cryogenic temperature, ductile facture with characteristic smooth areas with traces of plastic deformation of the surface and numerous craters were observed.
期刊介绍:
The main topics of the journal are: Micro & Nano Technologies; Rapid Prototyping Technologies; High Speed Manufacturing Processes; Ecological Technologies in Machine Manufacturing; Manufacturing and Automation; Flexible Manufacturing; New Manufacturing Processes; Design, Control and Exploitation; Assembly and Disassembly; Cold Forming Technologies; Optimization of Experimental Research and Manufacturing Processes; Maintenance, Reliability, Life Cycle Time and Cost; CAD/CAM/CAE/CAX Integrated Systems; Composite Materials Technologies; Non-conventional Technologies; Concurrent Engineering; Virtual Manufacturing; Innovation, Creativity and Industrial Development.