{"title":"Nanobots: Revolutionizing the next generation of biomedical technology and drug therapy","authors":"Vandana Panda, Akash Saindane, Aditya Pandey","doi":"10.2174/1574885518666230726123433","DOIUrl":null,"url":null,"abstract":"\n\nNanoscale machines called “nanorobots” that were hitherto only futuristic ideas are set to storm healthcare and pharmaceuticals with newer technologies for minimally invasive diagnosis, quick and precise surgeries, and targeted drug delivery, which is challenging to achieve by conventional drug delivery systems. Nanobots can be defined as controllable nano-sized mechanical or electromechanical devices which are easily incorporated into cells and used for a variety of cellular functions like combating bacteria and viruses, disposing away dead cells/tissue at the place of a wound, cell/tissue repair and destruction of cancer cells, and also for transporting drugs to cells. Nanorobots can help avoid the untoward effects of traditional drug delivery systems and ameliorate the efficiency of drug delivery by quickly entering the desired cells without affecting other organs. With the advent of mobile communication, artificial neural networks, and Information Technology, futuristic and more advanced nanobots with artificial intelligence are in the offing. However, the challenges to this revolutionary technology are umpteen, the major concern being their interaction inside the human body. This review explicitly expounds on nanobots and their applications to medicine, biomedical research, and drug delivery.\n","PeriodicalId":11004,"journal":{"name":"Current Drug Therapy","volume":" ","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2023-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Drug Therapy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2174/1574885518666230726123433","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
Nanoscale machines called “nanorobots” that were hitherto only futuristic ideas are set to storm healthcare and pharmaceuticals with newer technologies for minimally invasive diagnosis, quick and precise surgeries, and targeted drug delivery, which is challenging to achieve by conventional drug delivery systems. Nanobots can be defined as controllable nano-sized mechanical or electromechanical devices which are easily incorporated into cells and used for a variety of cellular functions like combating bacteria and viruses, disposing away dead cells/tissue at the place of a wound, cell/tissue repair and destruction of cancer cells, and also for transporting drugs to cells. Nanorobots can help avoid the untoward effects of traditional drug delivery systems and ameliorate the efficiency of drug delivery by quickly entering the desired cells without affecting other organs. With the advent of mobile communication, artificial neural networks, and Information Technology, futuristic and more advanced nanobots with artificial intelligence are in the offing. However, the challenges to this revolutionary technology are umpteen, the major concern being their interaction inside the human body. This review explicitly expounds on nanobots and their applications to medicine, biomedical research, and drug delivery.
期刊介绍:
Current Drug Therapy publishes frontier reviews of high quality on all the latest advances in drug therapy covering: new and existing drugs, therapies and medical devices. The journal is essential reading for all researchers and clinicians involved in drug therapy.