Ravi Bhatia , Kiran Kumari , Reena Rani , Anil Suri , Ushma Pahuja , Devinder Singh
{"title":"A critical review of experimental results on low temperature charge transport in carbon nanotubes based composites","authors":"Ravi Bhatia , Kiran Kumari , Reena Rani , Anil Suri , Ushma Pahuja , Devinder Singh","doi":"10.1016/j.revip.2017.12.001","DOIUrl":null,"url":null,"abstract":"<div><p>Owing to their low density, high aspect ratio and excellent charge transport properties, Carbon nanotubes (CNTs) are proven to be one of the best reinforcing materials in the fabrication of composite materials. CNTs dispersed in a non-conducting matrix is an interesting system for condensed matter physicists and materials scientists; CNT based composites offer an opportunity to physicists to design different experiments for fundamental studies while these composites are suitable for several technological applications that are of interest to materials scientists. In this review article, we summarize interesting experimental results on low temperature charge transport properties of composites based on multi-wall carbon nanotubes (MWCNTs) that have been reported in the past decade. In particular, we critically review different conduction mechanisms that have been identified through detailed investigations of charge transport characteristics as functions of MWCNT loading in the composites, temperature, and magnetic field.</p></div>","PeriodicalId":37875,"journal":{"name":"Reviews in Physics","volume":"3 ","pages":"Pages 15-25"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.revip.2017.12.001","citationCount":"20","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reviews in Physics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2405428317300291","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 20
Abstract
Owing to their low density, high aspect ratio and excellent charge transport properties, Carbon nanotubes (CNTs) are proven to be one of the best reinforcing materials in the fabrication of composite materials. CNTs dispersed in a non-conducting matrix is an interesting system for condensed matter physicists and materials scientists; CNT based composites offer an opportunity to physicists to design different experiments for fundamental studies while these composites are suitable for several technological applications that are of interest to materials scientists. In this review article, we summarize interesting experimental results on low temperature charge transport properties of composites based on multi-wall carbon nanotubes (MWCNTs) that have been reported in the past decade. In particular, we critically review different conduction mechanisms that have been identified through detailed investigations of charge transport characteristics as functions of MWCNT loading in the composites, temperature, and magnetic field.
期刊介绍:
Reviews in Physics is a gold open access Journal, publishing review papers on topics in all areas of (applied) physics. The journal provides a platform for researchers who wish to summarize a field of physics research and share this work as widely as possible. The published papers provide an overview of the main developments on a particular topic, with an emphasis on recent developments, and sketch an outlook on future developments. The journal focuses on short review papers (max 15 pages) and these are freely available after publication. All submitted manuscripts are fully peer-reviewed and after acceptance a publication fee is charged to cover all editorial, production, and archiving costs.