Hyper-Gaussian regularized Whittaker–Kotel’nikov–Shannon sampling series

IF 2.4 2区 数学 Q1 MATHEMATICS Analysis and Applications Pub Date : 2022-01-22 DOI:10.1142/s0219530521500342
Liangzhi Chen, Yang Wang, Haizhang Zhang
{"title":"Hyper-Gaussian regularized Whittaker–Kotel’nikov–Shannon sampling series","authors":"Liangzhi Chen, Yang Wang, Haizhang Zhang","doi":"10.1142/s0219530521500342","DOIUrl":null,"url":null,"abstract":"The reconstruction of a bandlimited function from its finite sample data is fundamental in signal analysis. It is well known that oversampling of a bandlimited function leads to exponential convergence in its reconstruction. A simple and efficient Gaussian regularized Shannon sampling formula has been proposed in G. W. Wei [Quasi wavelets and quasi interpolating wavelets, Chem. Phys. Lett. 296 (1998) 215–222] with such an exponential convergence ability. We show that all hyper-Gaussian regularized formulas share this desired property. The analysis is built on estimates on the Fourier transform of the hyper-Gaussian functions. We also establish error bounds for the reconstruction of derivatives of a univariate bandlimited function, and for multivariate bandlimited functions.","PeriodicalId":55519,"journal":{"name":"Analysis and Applications","volume":" ","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2022-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analysis and Applications","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s0219530521500342","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

Abstract

The reconstruction of a bandlimited function from its finite sample data is fundamental in signal analysis. It is well known that oversampling of a bandlimited function leads to exponential convergence in its reconstruction. A simple and efficient Gaussian regularized Shannon sampling formula has been proposed in G. W. Wei [Quasi wavelets and quasi interpolating wavelets, Chem. Phys. Lett. 296 (1998) 215–222] with such an exponential convergence ability. We show that all hyper-Gaussian regularized formulas share this desired property. The analysis is built on estimates on the Fourier transform of the hyper-Gaussian functions. We also establish error bounds for the reconstruction of derivatives of a univariate bandlimited function, and for multivariate bandlimited functions.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
超高斯正则化Whittaker-Kotel 'nikov-Shannon抽样序列
从有限样本数据重建带限函数是信号分析的基础。众所周知,带限函数的过采样会导致其重建中的指数收敛。G.W.Wei[准小波和准插值小波,Chem.Phys.Lett.296(1998)215–222]提出了一个简单有效的高斯正则化Shannon采样公式,具有这样的指数收敛能力。我们证明了所有超高斯正则化公式都具有这个期望的性质。该分析建立在对超高斯函数的傅立叶变换的估计之上。我们还建立了重建单变量带限函数导数和多变量带限功能的误差界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
3.90
自引率
4.50%
发文量
29
审稿时长
>12 weeks
期刊介绍: Analysis and Applications publishes high quality mathematical papers that treat those parts of analysis which have direct or potential applications to the physical and biological sciences and engineering. Some of the topics from analysis include approximation theory, asymptotic analysis, calculus of variations, integral equations, integral transforms, ordinary and partial differential equations, delay differential equations, and perturbation methods. The primary aim of the journal is to encourage the development of new techniques and results in applied analysis.
期刊最新文献
On the strong solution for a diffuse interface model of non-Newtonian two-phase flows Distributed SGD in Overparameterized Linear Regression Interpolatory Taylor and Lidstone series Author index Volume 21 (2023) Convergence Analysis of Deep Residual Networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1