Ricky Irwansyah, Rodika Rodika, Agus Wanto, Mego Wahyudi, Sukanto Wiryono
{"title":"Pengaruh Pemadatan Dua-arah Penekanan Terhadap Densitas dan Kekerasan AMC diperkuat Serbuk Silikon Dioksida","authors":"Ricky Irwansyah, Rodika Rodika, Agus Wanto, Mego Wahyudi, Sukanto Wiryono","doi":"10.35970/infotekmesin.v14i2.1902","DOIUrl":null,"url":null,"abstract":"The compaction method of powder metallurgy technology is an important process in influencing the density and hardness of the resulting product. This study aims to determine the effect of a one-way compaction method compared to a two-way compaction method on the density and hardness of the resulting composite product. The experimental method for making aluminum matrix composites with silica sand reinforcement applies a compaction pressure of 4500 Psi. Mixing utilizing mechanical alloying used a horizontal ball mill machine. The density test refers to the Archimedes principle with the ASTM B962-17 standard, while the Rockwell Brinel hardness test uses the ASTM E110-14 standard. The results of the sample density test of the two-way compaction method of compaction showed a higher value compared to the sample density of the one-way compaction results, respectively; values of 2.132 g/cm3 and 2.119 g/cm3. The hardness value of the sample resulting from two-way compression compaction also has a higher value than the sample hardness resulting from one-way compression compaction, respectively; worth 43.67 HRB and 36.78 HRB. Furthermore, based on the results of microstructural analysis, the interlocking bonding occurs in composite samples with two-way compaction. It is also better than the interlocking mechanical bonding in composite samples resulting from one-way compaction.","PeriodicalId":33598,"journal":{"name":"Infotekmesin Media Komunikasi Ilmiah Politeknik Cilacap","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Infotekmesin Media Komunikasi Ilmiah Politeknik Cilacap","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.35970/infotekmesin.v14i2.1902","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The compaction method of powder metallurgy technology is an important process in influencing the density and hardness of the resulting product. This study aims to determine the effect of a one-way compaction method compared to a two-way compaction method on the density and hardness of the resulting composite product. The experimental method for making aluminum matrix composites with silica sand reinforcement applies a compaction pressure of 4500 Psi. Mixing utilizing mechanical alloying used a horizontal ball mill machine. The density test refers to the Archimedes principle with the ASTM B962-17 standard, while the Rockwell Brinel hardness test uses the ASTM E110-14 standard. The results of the sample density test of the two-way compaction method of compaction showed a higher value compared to the sample density of the one-way compaction results, respectively; values of 2.132 g/cm3 and 2.119 g/cm3. The hardness value of the sample resulting from two-way compression compaction also has a higher value than the sample hardness resulting from one-way compression compaction, respectively; worth 43.67 HRB and 36.78 HRB. Furthermore, based on the results of microstructural analysis, the interlocking bonding occurs in composite samples with two-way compaction. It is also better than the interlocking mechanical bonding in composite samples resulting from one-way compaction.