A case study on the changing pattern of monsoon rainfall duration and its amount during recent five decades in different agroclimatic zones of Punjab state of India

IF 0.7 4区 地球科学 Q4 METEOROLOGY & ATMOSPHERIC SCIENCES MAUSAM Pub Date : 2023-07-01 DOI:10.54302/mausam.v74i3.5331
S. Sandhu, P. Kaur
{"title":"A case study on the changing pattern of monsoon rainfall duration and its amount during recent five decades in different agroclimatic zones of Punjab state of India","authors":"S. Sandhu, P. Kaur","doi":"10.54302/mausam.v74i3.5331","DOIUrl":null,"url":null,"abstract":"Rainfall is an important part of hydrological cycle and any alteration in its pattern influence water resources. In Punjab, the monsoon season of 77 days extending during three months July, August and September, receives rainfall at an average rate of 6 mm/day. In the present study, monsoon rainfall data for three parts of the state, viz., the north eastern region (1984-2020), Central plain region (1970-2020) and the south western region (1977-2020) of the state have been analyzed using non-parametric tests, i.e., descriptive statistics, trend analysis, Mann Kendall test and Sen’s slope. Though, the duration of the monsoon season has increased over the last two decades at 0.8 day/year, the rate of rainfall has decreased as rainfall has been less than normal during 17 of the past 20 years. The monsoon rainfall analysis for the five decades indicates a significant decrease in rainfall at 0.7 mm/year which has mainly been due to a decline in rainfall in the north eastern region. The Sen’s slope value of -4.77 (Ballowal) and -0.60 (Bathinda) indicate a decreasing trend of rainfall in the region. The decreasing trend in rainfall received during the July-August months with Sen’s slope values ranging between -0.04 to -2.50 and -0.24 to -3.14, indicates that the months which contribute 70 percent to total rainfall are not a good signal for the agriculture sector in the state.","PeriodicalId":18363,"journal":{"name":"MAUSAM","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"MAUSAM","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.54302/mausam.v74i3.5331","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Rainfall is an important part of hydrological cycle and any alteration in its pattern influence water resources. In Punjab, the monsoon season of 77 days extending during three months July, August and September, receives rainfall at an average rate of 6 mm/day. In the present study, monsoon rainfall data for three parts of the state, viz., the north eastern region (1984-2020), Central plain region (1970-2020) and the south western region (1977-2020) of the state have been analyzed using non-parametric tests, i.e., descriptive statistics, trend analysis, Mann Kendall test and Sen’s slope. Though, the duration of the monsoon season has increased over the last two decades at 0.8 day/year, the rate of rainfall has decreased as rainfall has been less than normal during 17 of the past 20 years. The monsoon rainfall analysis for the five decades indicates a significant decrease in rainfall at 0.7 mm/year which has mainly been due to a decline in rainfall in the north eastern region. The Sen’s slope value of -4.77 (Ballowal) and -0.60 (Bathinda) indicate a decreasing trend of rainfall in the region. The decreasing trend in rainfall received during the July-August months with Sen’s slope values ranging between -0.04 to -2.50 and -0.24 to -3.14, indicates that the months which contribute 70 percent to total rainfall are not a good signal for the agriculture sector in the state.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
印度旁遮普邦不同农业气候带近50年季风降水时长的变化特征
降雨是水文循环的重要组成部分,其模式的任何变化都会影响水资源。在旁遮普邦,季风季节在7月、8月和9月三个月内持续77天,平均降雨量为6毫米/天。在本研究中,使用非参数检验,即描述性统计、趋势分析、Mann-Kendall检验和Sen斜率,分析了该州东北部地区(1984-2020)、中部平原地区(1970-2020)和西南部地区(1977-2020)三个地区的季风降雨数据。尽管在过去二十年中,季风季节的持续时间以每年0.8天的速度增加,但由于过去20年中有17年的降雨量低于正常水平,降雨量有所下降。50年的季风降雨量分析表明,降雨量显著下降,为0.7毫米/年,这主要是由于东北地区的降雨量下降。Sen的斜率值为-4.77(Ballowal)和-0.60(Bathinda),表明该地区的降雨量呈下降趋势。7月至8月的降雨量呈下降趋势,森的斜率值在-0.04至-2.50和-0.24至-3.14之间,这表明占总降雨量70%的月份对该州农业部门来说不是一个好信号。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
MAUSAM
MAUSAM 地学-气象与大气科学
CiteScore
1.20
自引率
0.00%
发文量
1298
审稿时长
6-12 weeks
期刊介绍: MAUSAM (Formerly Indian Journal of Meteorology, Hydrology & Geophysics), established in January 1950, is the quarterly research journal brought out by the India Meteorological Department (IMD). MAUSAM is a medium for publication of original scientific research work. MAUSAM is a premier scientific research journal published in this part of the world in the fields of Meteorology, Hydrology & Geophysics. The four issues appear in January, April, July & October.
期刊最新文献
Precursors of hazard due to super cyclone AMPHAN for Kolkata, India from surface observations Analysis of long-term trends of rainfall and extreme rainfall events over Andaman & Nicobar and Lakshadweep Islands of India Climate drives of growth, yield and microclimate variability in multistoried coconut plantation in Konkan region of Maharashtra, India Accuracy of cumulonimbus cloud prediction using Rapidly Developing Cumulus Area (RDCA) products at Pattimura Ambon airport Markov Chain analysis of rainfall of Coimbatore
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1