The Lookup Table Regression Model for Histogram-Valued Symbolic Data

IF 0.9 Q4 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS Stats Pub Date : 2022-12-04 DOI:10.3390/stats5040077
M. Ichino
{"title":"The Lookup Table Regression Model for Histogram-Valued Symbolic Data","authors":"M. Ichino","doi":"10.3390/stats5040077","DOIUrl":null,"url":null,"abstract":"This paper presents the Lookup Table Regression Model (LTRM) for histogram-valued symbolic data. We first transform the given symbolic data to a numerical data table by the quantile method. Then, under the selected response variable, we apply the Monotone Blocks Segmentation (MBS) to the obtained numerical data table. If the selected response variable and some remained explanatory variable(s) organize a monotone structure, the MBS generates a Lookup Table composed of interval values. For a given object, we search the nearest value of an explanatory variable, then the corresponding value of the response variable becomes the estimated value. If the response variable and the explanatory variable(s) are covariate but they follow to a non-monotonic structure, we need to divide the given data into several monotone substructures. For this purpose, we apply the hierarchical conceptual clustering to the given data, and we obtain Multiple Lookup Tables by applying the MBS to each of substructures. We show the usefulness of the proposed method by using an artificial data set and real data sets.","PeriodicalId":93142,"journal":{"name":"Stats","volume":" ","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2022-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stats","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/stats5040077","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents the Lookup Table Regression Model (LTRM) for histogram-valued symbolic data. We first transform the given symbolic data to a numerical data table by the quantile method. Then, under the selected response variable, we apply the Monotone Blocks Segmentation (MBS) to the obtained numerical data table. If the selected response variable and some remained explanatory variable(s) organize a monotone structure, the MBS generates a Lookup Table composed of interval values. For a given object, we search the nearest value of an explanatory variable, then the corresponding value of the response variable becomes the estimated value. If the response variable and the explanatory variable(s) are covariate but they follow to a non-monotonic structure, we need to divide the given data into several monotone substructures. For this purpose, we apply the hierarchical conceptual clustering to the given data, and we obtain Multiple Lookup Tables by applying the MBS to each of substructures. We show the usefulness of the proposed method by using an artificial data set and real data sets.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
直方图值符号数据的查找表回归模型
本文提出了直方图值符号数据的查找表回归模型(LTRM)。我们首先用分位数法将给定的符号数据转换为数值数据表。然后,在选定的响应变量下,对得到的数值数据表进行单调块分割(Monotone Blocks Segmentation, MBS)。如果选定的响应变量和一些剩余的解释变量构成单调结构,则MBS生成一个由区间值组成的查找表。对于给定的对象,我们搜索解释变量的最近值,然后响应变量的对应值成为估价值。如果响应变量和解释变量是协变量,但它们遵循非单调结构,我们需要将给定的数据划分为几个单调子结构。为此,我们将分层概念聚类应用于给定数据,并通过对每个子结构应用MBS获得多个查找表。我们通过使用人工数据集和真实数据集来证明所提出方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
0.60
自引率
0.00%
发文量
0
审稿时长
7 weeks
期刊最新文献
Precise Tensor Product Smoothing via Spectral Splines Predicting Random Walks and a Data-Splitting Prediction Region The Mediating Impact of Innovation Types in the Relationship between Innovation Use Theory and Market Performance Jump-Robust Realized-GARCH-MIDAS-X Estimators for Bitcoin and Ethereum Volatility Indices Revisiting the Large n (Sample Size) Problem: How to Avert Spurious Significance Results
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1