{"title":"Influence of thermal treatment on electronic properties of inkjet-printed zinc oxide semiconductor","authors":"V. Tran, Yuefan Wei, Hejun Du","doi":"10.1080/19475411.2022.2084172","DOIUrl":null,"url":null,"abstract":"ABSTRACT Additive manufacturing of electronic devices using inkjet printing provides a potential alternative approach in substitution for conventional electronic fabrication processes. However, the complex nature of inkjet printing involves the liquid deposition and film formation from the vaporization of solvent, which makes it different from film created by conventional deposition methods. Inkjet printing of zinc oxide (ZnO), which is a widely utilized semiconductor, produces polycrystalline film composed of nano-size grains, which could significantly influence the properties of printed film. In this study, low-temperature annealing was employed to treat inkjet-printed ZnO for UV photodetection application, and its influence on electrical properties was studied. Band bending was characterized using the Mott-Schottky plot which examines the charge distribution of the films. It is found that the annealing of inkjet-printed polycrystalline ZnO film has improved its electrical properties, which could be attributed to the reduction of band bending due to the merging of grains. The treatment also helps to reduce impurities of the film, such as zinc hydroxide complexes, which are common for solution-derived films. Hence, the study could pay the way for the improvement of electrical properties of inkjet-printed functional materials. Graphical abstract","PeriodicalId":48516,"journal":{"name":"International Journal of Smart and Nano Materials","volume":"13 1","pages":"330 - 345"},"PeriodicalIF":4.5000,"publicationDate":"2022-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Smart and Nano Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1080/19475411.2022.2084172","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1
Abstract
ABSTRACT Additive manufacturing of electronic devices using inkjet printing provides a potential alternative approach in substitution for conventional electronic fabrication processes. However, the complex nature of inkjet printing involves the liquid deposition and film formation from the vaporization of solvent, which makes it different from film created by conventional deposition methods. Inkjet printing of zinc oxide (ZnO), which is a widely utilized semiconductor, produces polycrystalline film composed of nano-size grains, which could significantly influence the properties of printed film. In this study, low-temperature annealing was employed to treat inkjet-printed ZnO for UV photodetection application, and its influence on electrical properties was studied. Band bending was characterized using the Mott-Schottky plot which examines the charge distribution of the films. It is found that the annealing of inkjet-printed polycrystalline ZnO film has improved its electrical properties, which could be attributed to the reduction of band bending due to the merging of grains. The treatment also helps to reduce impurities of the film, such as zinc hydroxide complexes, which are common for solution-derived films. Hence, the study could pay the way for the improvement of electrical properties of inkjet-printed functional materials. Graphical abstract
期刊介绍:
The central aim of International Journal of Smart and Nano Materials is to publish original results, critical reviews, technical discussion, and book reviews related to this compelling research field: smart and nano materials, and their applications. The papers published in this journal will provide cutting edge information and instructive research guidance, encouraging more scientists to make their contribution to this dynamic research field.