Carbon isotopes in wood combustion/pyrolysis products: experimental and molecular simulation approaches

IF 1.2 4区 地球科学 Q3 Earth and Planetary Sciences Geochronometria Pub Date : 2019-01-01 DOI:10.1515/geochr-2015-0110
H. Hercman, M. Szczerba, P. Zawidzki, A. Trojan
{"title":"Carbon isotopes in wood combustion/pyrolysis products: experimental and molecular simulation approaches","authors":"H. Hercman, M. Szczerba, P. Zawidzki, A. Trojan","doi":"10.1515/geochr-2015-0110","DOIUrl":null,"url":null,"abstract":"Abstract A series of laboratory experiments was performed to determine the carbon stable isotopic composition of different combustion/pyrolysis (B/P) products. Variation in the δ13C values of the products was observed, up to 4‰. The differences in the carbon isotopic compositions of the B/P products were dependent on temperature, time and wood type. Comparison of the results for fresh and fossil oak wood suggested that the δ13C differences were the effect of selective decomposition of some wood components during the fossilization process. The temperature dependence of the carbon isotopic composition was linked to variation in the carbon isotopic composition of the main wood components, which each had different levels of thermal stability. Isotopes exchange reactions in between different products can be also considered as possible source of variation of δ13C on temperature. Both these hypotheses were supported by molecular simulations of cellulose and lignin B/P. The results confirm that B/P should be treated as a continuous process, where the results depend on the degree of process development. Natural burning processes are dynamic and burning conditions change rapidly and it is necessary to take care when using combustion products as a paleoenvironmental proxy or as an isotopic characteristic for the identification of source material.","PeriodicalId":50421,"journal":{"name":"Geochronometria","volume":"46 1","pages":"111 - 124"},"PeriodicalIF":1.2000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geochronometria","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1515/geochr-2015-0110","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Earth and Planetary Sciences","Score":null,"Total":0}
引用次数: 2

Abstract

Abstract A series of laboratory experiments was performed to determine the carbon stable isotopic composition of different combustion/pyrolysis (B/P) products. Variation in the δ13C values of the products was observed, up to 4‰. The differences in the carbon isotopic compositions of the B/P products were dependent on temperature, time and wood type. Comparison of the results for fresh and fossil oak wood suggested that the δ13C differences were the effect of selective decomposition of some wood components during the fossilization process. The temperature dependence of the carbon isotopic composition was linked to variation in the carbon isotopic composition of the main wood components, which each had different levels of thermal stability. Isotopes exchange reactions in between different products can be also considered as possible source of variation of δ13C on temperature. Both these hypotheses were supported by molecular simulations of cellulose and lignin B/P. The results confirm that B/P should be treated as a continuous process, where the results depend on the degree of process development. Natural burning processes are dynamic and burning conditions change rapidly and it is necessary to take care when using combustion products as a paleoenvironmental proxy or as an isotopic characteristic for the identification of source material.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
木材燃烧/热解产物中的碳同位素:实验和分子模拟方法
摘要进行了一系列实验室实验,测定了不同燃烧/热解(B/P)产物的碳稳定同位素组成。观察到产物的δ13C值变化,高达4‰。B/P产物碳同位素组成的差异取决于温度、时间和木材类型。新鲜橡木和化石橡木的结果比较表明,δ13C的差异是石化过程中某些木材成分选择性分解的结果。碳同位素组成的温度依赖性与主要木材成分的碳同位素组成变化有关,每种成分都具有不同的热稳定性。不同产物之间的同位素交换反应也可以被认为是δ13C随温度变化的可能来源。这两个假设都得到了纤维素和木质素B/P的分子模拟的支持。结果证实,B/P应被视为一个连续的过程,其结果取决于过程发展的程度。自然燃烧过程是动态的,燃烧条件变化迅速,在使用燃烧产物作为古环境指标或同位素特征来识别源物质时,有必要小心。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Geochronometria
Geochronometria 地学-地球科学综合
CiteScore
2.20
自引率
0.00%
发文量
1
审稿时长
>12 weeks
期刊介绍: Geochronometria is aimed at integrating scientists developing different methods of absolute chronology and using them in different fields of earth and other natural sciences and archaeology. The methods in use are e.g. radiocarbon, stable isotopes, isotopes of natural decay series, optically stimulated luminescence, thermoluminescence, EPR/ESR, dendrochronology, varve chronology. The journal publishes papers that are devoted to developing the dating methods as well as studies concentrating on their applications in geology, palaeoclimatology, palaeobiology, palaeohydrology, geocgraphy and archaeology etc.
期刊最新文献
Radiocarbon Dated Pulse and Cereal Crops Indicate Diachronic Use of Iron Age Extreme Upland Sites in the Western Carpathians, Slovakia Evaluating the Effect of Hydrofluoric Acid Etching on Quartz Grains using Microscope Image Analysis, Laser Diffraction and Weight Loss Particle Size Estimate The Internal Dose Rate in Quartz Grains: Experimental Data and Consequences for Luminescence Dating Chronology of the Huxushan Paleolithic site in south China: Inferred from multiple luminescence dating techniques Multi-method luminescence dating of old fluvial sediments from northern Tian Shan, China
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1