Pub Date : 2023-01-01DOI: 10.2478/geochr-2023-0001
P. Barta, M. Hajnalová, Lucia Benediková, D. Dreslerová, K. Pieta
Abstract Mountain summits in the Slovak part of the Western Carpathians bear evidence of human presence from the Late Bronze to the Late Iron Age. According to fire-induced changes in archaeological record and finds of weaponry, some of the extreme upland sites (EUS) were viewed as places of safety or refugia violently destroyed within a short period. We have focussed on three sites with summits at 1300–1550 m a. s. l. and found out that two of them were used in 650–400 calBC and 390–150 calBC, respectively. By the first systematic use of 14C dating and targeted 14C sampling, we have overcome the inherent chronological imprecision of their artefactual record and opened new vistas for interpretation of this type of sites.
摘要喀尔巴阡山脉西部斯洛伐克部分的山峰上有青铜时代晚期至铁器时代晚期人类存在的证据。根据火灾引起的考古记录和武器发现的变化,一些极端高地遗址被视为安全场所或避难所,在短时间内遭到猛烈破坏。我们重点研究了三个峰值位于1300–1550 m a.s.l.的地点,发现其中两个分别用于650–400 calBC和390–150 calBC。通过首次系统地使用14C定年和有针对性的14C采样,我们克服了其人工记录固有的时间不精确性,并为解释这类遗址开辟了新的前景。
{"title":"Radiocarbon Dated Pulse and Cereal Crops Indicate Diachronic Use of Iron Age Extreme Upland Sites in the Western Carpathians, Slovakia","authors":"P. Barta, M. Hajnalová, Lucia Benediková, D. Dreslerová, K. Pieta","doi":"10.2478/geochr-2023-0001","DOIUrl":"https://doi.org/10.2478/geochr-2023-0001","url":null,"abstract":"Abstract Mountain summits in the Slovak part of the Western Carpathians bear evidence of human presence from the Late Bronze to the Late Iron Age. According to fire-induced changes in archaeological record and finds of weaponry, some of the extreme upland sites (EUS) were viewed as places of safety or refugia violently destroyed within a short period. We have focussed on three sites with summits at 1300–1550 m a. s. l. and found out that two of them were used in 650–400 calBC and 390–150 calBC, respectively. By the first systematic use of 14C dating and targeted 14C sampling, we have overcome the inherent chronological imprecision of their artefactual record and opened new vistas for interpretation of this type of sites.","PeriodicalId":50421,"journal":{"name":"Geochronometria","volume":"50 1","pages":"1 - 20"},"PeriodicalIF":1.2,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48119747","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-01-01DOI: 10.2478/geochr-2022-0002
A. Szymak, P. Moska, G. Poręba, K. Tudyka, G. Adamiec
Abstract This work considers the impact of the internal alpha and beta dose rates in quartz grains obtained from sandy sediments on the results of luminescence dating. The internal dose rates reported here (ca. 0.01–0.21 Gy · ka−1) play a particularly important role, because of low (ca. 0.8–0.9 Gy · ka−1) or very low (ca. 0.4–0.6 Gy · ka−1) external dose rates. In these cases, the internal dose rates form a significant fraction of the total dose rates, often exceeding 10%. Ignoring this contribution would have made the considered luminescence ages artificially older. In our study, we measure both the internal alpha and beta contributions as the latter is usually neglected in the case of quartz. The dose rate measurements were performed using the innovative μDose system.
{"title":"The Internal Dose Rate in Quartz Grains: Experimental Data and Consequences for Luminescence Dating","authors":"A. Szymak, P. Moska, G. Poręba, K. Tudyka, G. Adamiec","doi":"10.2478/geochr-2022-0002","DOIUrl":"https://doi.org/10.2478/geochr-2022-0002","url":null,"abstract":"Abstract This work considers the impact of the internal alpha and beta dose rates in quartz grains obtained from sandy sediments on the results of luminescence dating. The internal dose rates reported here (ca. 0.01–0.21 Gy · ka−1) play a particularly important role, because of low (ca. 0.8–0.9 Gy · ka−1) or very low (ca. 0.4–0.6 Gy · ka−1) external dose rates. In these cases, the internal dose rates form a significant fraction of the total dose rates, often exceeding 10%. Ignoring this contribution would have made the considered luminescence ages artificially older. In our study, we measure both the internal alpha and beta contributions as the latter is usually neglected in the case of quartz. The dose rate measurements were performed using the innovative μDose system.","PeriodicalId":50421,"journal":{"name":"Geochronometria","volume":"49 1","pages":"9 - 17"},"PeriodicalIF":1.2,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42256195","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-01-01DOI: 10.2478/geochr-2022-0001
G. Poręba, K. Tudyka, A. Szymak, Julia Pluta, Joanna Rocznik, J. Swiatkowski, R. Osadnik, P. Moska
Abstract In this work we investigate the quartz etching process using hydrofluoric acid for trapped charge dating (TCD) applications. It is done using material collected from an active sand mine in Bełchatów Nowy Świat, central Poland. Approximately 20 kg of material was collected and prepared using routine procedures that are applied in TCD laboratories. The material was sieved using 180–200 μm meshes, and the selected fraction was etched for various time intervals. Sieved samples were etched for durations from 0 min up to 180 min and measured with microscope image analysis (IA), laser diffraction (LD), and mass loss which were used to estimate the depths of etching. Our results show statistical data on how non-uniform the etching process is. We estimate this as a function of etching time from IA, LD and mass loss. In our investigation, mass loss measurements with the assumption of spherical grains correspond to the decrease of radius of ca. 0.151 ± 0.003 μm · min−1. In case of LD, a rough etch depth estimation corresponds to a range 0.06–0.18 μm · min−1 with median at 0.13 μm · min−1. Microscope IA gives a 0.03–0.09 μm · min−1 with a median at 0.05 μm · min−1. Moreover, quartz grains are fractured into smaller pieces while etching. It means that assumptions that are used in etch depth estimation from mass loss are not correct. They incorrect not only because grains are not spheres but also because the number of grains is not constant. Therefore, the etch depth estimated from mass loss might be overestimated. Using microscope IA we report etch depth ranges that might be used to roughly estimate the etch depth uncertainty.
{"title":"Evaluating the Effect of Hydrofluoric Acid Etching on Quartz Grains using Microscope Image Analysis, Laser Diffraction and Weight Loss Particle Size Estimate","authors":"G. Poręba, K. Tudyka, A. Szymak, Julia Pluta, Joanna Rocznik, J. Swiatkowski, R. Osadnik, P. Moska","doi":"10.2478/geochr-2022-0001","DOIUrl":"https://doi.org/10.2478/geochr-2022-0001","url":null,"abstract":"Abstract In this work we investigate the quartz etching process using hydrofluoric acid for trapped charge dating (TCD) applications. It is done using material collected from an active sand mine in Bełchatów Nowy Świat, central Poland. Approximately 20 kg of material was collected and prepared using routine procedures that are applied in TCD laboratories. The material was sieved using 180–200 μm meshes, and the selected fraction was etched for various time intervals. Sieved samples were etched for durations from 0 min up to 180 min and measured with microscope image analysis (IA), laser diffraction (LD), and mass loss which were used to estimate the depths of etching. Our results show statistical data on how non-uniform the etching process is. We estimate this as a function of etching time from IA, LD and mass loss. In our investigation, mass loss measurements with the assumption of spherical grains correspond to the decrease of radius of ca. 0.151 ± 0.003 μm · min−1. In case of LD, a rough etch depth estimation corresponds to a range 0.06–0.18 μm · min−1 with median at 0.13 μm · min−1. Microscope IA gives a 0.03–0.09 μm · min−1 with a median at 0.05 μm · min−1. Moreover, quartz grains are fractured into smaller pieces while etching. It means that assumptions that are used in etch depth estimation from mass loss are not correct. They incorrect not only because grains are not spheres but also because the number of grains is not constant. Therefore, the etch depth estimated from mass loss might be overestimated. Using microscope IA we report etch depth ranges that might be used to roughly estimate the etch depth uncertainty.","PeriodicalId":50421,"journal":{"name":"Geochronometria","volume":"229 ","pages":"1 - 8"},"PeriodicalIF":1.2,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41284734","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Abstract The Huxushan archaeological site in northern Hunan Province, China, was recently excavated, from which stone tools including handaxes were unearthed. The deposits of the site are chemically weathered, which makes it difficult to date the site using numerical dating techniques except for optically stimulated luminescence (OSL) method. Here, we used various luminescence procedures including single-aliquot regenerative-dose (SAR), sensitivity-corrected multiple-aliquot regenerative-dose (SMAR) and thermally transferred optically stimulated luminescence (TT-OSL) SAR procedures on fine-grained quartz, and two-step post-infrared infrared stimulated luminescence (pIRIR) and multi-elevated-temperature pIRIR (MET-pIRIR) procedures on fine polymineral fractions. The results show that the fine quartz grains have excellent luminescence properties and the quartz SAR-, SMAR- and TT-OSL ages for the samples agree with each other and in stratigraphical order except for one sample. The fine polymineral fractions exhibited relatively weak pIRIR and MET-pIRIR signals, resulting in difficulty in constructing the dose-response curve for MET-pIRIR signals and the stratigraphically inconsistent pIRIR(100, 275) ages. The seven samples yielded their quartz OSL ages ranging from about 62 ka to 133 ka. The two samples from the cultural layer was dated to 78 to 92 ka using different procedures on fine quartz . However, given the systematically older pIRIR ages obtained with the fine polymineral grains for the two samples, their quartz OSL ages are considered to represent the minimal ages of this layer, and their pIRIR(100, 275) ages of 118 and 110 ka represent the upper age limit, indicating that the site was occupied by hominins during Marine Isotope Stage 5.
{"title":"Chronology of the Huxushan Paleolithic site in south China: Inferred from multiple luminescence dating techniques","authors":"Hai-Cheng Lai, Yi-yuan Li, Jia-Fu Zhang, Liping Zhou","doi":"10.2478/geochr-2020-0039","DOIUrl":"https://doi.org/10.2478/geochr-2020-0039","url":null,"abstract":"Abstract The Huxushan archaeological site in northern Hunan Province, China, was recently excavated, from which stone tools including handaxes were unearthed. The deposits of the site are chemically weathered, which makes it difficult to date the site using numerical dating techniques except for optically stimulated luminescence (OSL) method. Here, we used various luminescence procedures including single-aliquot regenerative-dose (SAR), sensitivity-corrected multiple-aliquot regenerative-dose (SMAR) and thermally transferred optically stimulated luminescence (TT-OSL) SAR procedures on fine-grained quartz, and two-step post-infrared infrared stimulated luminescence (pIRIR) and multi-elevated-temperature pIRIR (MET-pIRIR) procedures on fine polymineral fractions. The results show that the fine quartz grains have excellent luminescence properties and the quartz SAR-, SMAR- and TT-OSL ages for the samples agree with each other and in stratigraphical order except for one sample. The fine polymineral fractions exhibited relatively weak pIRIR and MET-pIRIR signals, resulting in difficulty in constructing the dose-response curve for MET-pIRIR signals and the stratigraphically inconsistent pIRIR(100, 275) ages. The seven samples yielded their quartz OSL ages ranging from about 62 ka to 133 ka. The two samples from the cultural layer was dated to 78 to 92 ka using different procedures on fine quartz . However, given the systematically older pIRIR ages obtained with the fine polymineral grains for the two samples, their quartz OSL ages are considered to represent the minimal ages of this layer, and their pIRIR(100, 275) ages of 118 and 110 ka represent the upper age limit, indicating that the site was occupied by hominins during Marine Isotope Stage 5.","PeriodicalId":50421,"journal":{"name":"Geochronometria","volume":" ","pages":""},"PeriodicalIF":1.2,"publicationDate":"2021-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46691402","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-03-05DOI: 10.2478/geochr-2020-0014
Ke-chang Li, J. Qin, Jie Chen, Jun Shen, Sheng‐Hua Li
Abstract At the eastern tip of Anjihai anticline on the northern piedmont of Tian Shan (northwest China), deformed fluvial deposits have recorded active folding since the Pleistocene, but the absence of accurate ages makes it difficult to evaluate the anticline’s shortening rate. Geological studies ascribed the fluvial strata to the early Pleistocene, which poses potential challenges for luminescence dating. In this study, multi-methods luminescence dating was applied to a fluvial sand sample taken from the sandy bed of the deformed basal strata. Single grain post-Infrared Infrared Stimulated Luminescence (pIRIR) and multiple-aliquot-regenerative (MAR) dose along with multiple-elevated-temperature pIRIR (MET-pIRIR) procedures were applied to determine the paleodose of the sample. The methodological uncertainties, such as thermal transfer and initial sensitivity change, were treated by increasing the test dose and performing dose recovery test. With consideration of the potential partial bleaching and anomalous fading, various statistical metrics were applied to the De values determined by using the single grain pIRIR225, single grain pIRIR290 and MAR-MET-pIRIR290 signals. The minimum age model (MAM) De values are 11% – 17% lower than the central age model (CAM) De values in general, and the MAM De values determined by the single grain pIRIR procedures are underestimated by more than 40% when compared with those determined by MAR-MET-pIRIR290 procedure. The MAM MAR-MET-pIRIR290 De of 811 ± 44 Gy results in a burial age of 284 ka for the basal deformed fluvial strata, which is much younger than the proposed early Pleistocene age.
{"title":"Multi-method luminescence dating of old fluvial sediments from northern Tian Shan, China","authors":"Ke-chang Li, J. Qin, Jie Chen, Jun Shen, Sheng‐Hua Li","doi":"10.2478/geochr-2020-0014","DOIUrl":"https://doi.org/10.2478/geochr-2020-0014","url":null,"abstract":"Abstract At the eastern tip of Anjihai anticline on the northern piedmont of Tian Shan (northwest China), deformed fluvial deposits have recorded active folding since the Pleistocene, but the absence of accurate ages makes it difficult to evaluate the anticline’s shortening rate. Geological studies ascribed the fluvial strata to the early Pleistocene, which poses potential challenges for luminescence dating. In this study, multi-methods luminescence dating was applied to a fluvial sand sample taken from the sandy bed of the deformed basal strata. Single grain post-Infrared Infrared Stimulated Luminescence (pIRIR) and multiple-aliquot-regenerative (MAR) dose along with multiple-elevated-temperature pIRIR (MET-pIRIR) procedures were applied to determine the paleodose of the sample. The methodological uncertainties, such as thermal transfer and initial sensitivity change, were treated by increasing the test dose and performing dose recovery test. With consideration of the potential partial bleaching and anomalous fading, various statistical metrics were applied to the De values determined by using the single grain pIRIR225, single grain pIRIR290 and MAR-MET-pIRIR290 signals. The minimum age model (MAM) De values are 11% – 17% lower than the central age model (CAM) De values in general, and the MAM De values determined by the single grain pIRIR procedures are underestimated by more than 40% when compared with those determined by MAR-MET-pIRIR290 procedure. The MAM MAR-MET-pIRIR290 De of 811 ± 44 Gy results in a burial age of 284 ka for the basal deformed fluvial strata, which is much younger than the proposed early Pleistocene age.","PeriodicalId":50421,"journal":{"name":"Geochronometria","volume":" ","pages":""},"PeriodicalIF":1.2,"publicationDate":"2021-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49532680","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Abstract Five dating protocols with post-infrared infrared (IR) stimulated luminescence signals (i.e. pIRIR) were performed on the K-feldspar of loess samples. Two of them were the single-aliquot regenerative-dose protocol (SAR) with two-step pIRIR stimulation, with the first IR stimulation at 50°C or 200°C and the second at 290°C (pIR50IR290, pIR200IR290). Two of them were the SAR protocols with five-step or six-step IR stimulation at multiple elevated temperatures to 250°C or 300°C (MET-pIRIR250, MET-pIRIR300). The final one was the multiple-aliquot regenerative-dose (MAR) protocol with the MET-pIRIR300 signal, together with a 500°C heat treatment administered before the test dose (‘MAR with heat’). The results show that when the equivalent dose (De) of the sample was less than 500 Gy, all of the protocols gave consistent results; however, when De exceeded 750 Gy, all of the SAR protocols underestimated De. The pIR50IR290 signal had the highest degree of underestimation, while the pIR200IR290, MET-pIRIR250 and MET-pIRIR300 signals had similar De values and similar degrees of underestimation. Possible reasons for the SAR De underestimation are discussed. We suggest that only the ‘MAR with heat’ protocol is suitable for samples with De exceeding 750 Gy.
{"title":"Comparison of equivalent doses obtained with various post-IR IRSL dating protocols of K-feldspar","authors":"Junjie Zhang, Sheng‐Hua Li, Xulong Wang, Q. Hao, Guiming Hu, Yiwei Chen","doi":"10.2478/geochr-2020-0010","DOIUrl":"https://doi.org/10.2478/geochr-2020-0010","url":null,"abstract":"Abstract Five dating protocols with post-infrared infrared (IR) stimulated luminescence signals (i.e. pIRIR) were performed on the K-feldspar of loess samples. Two of them were the single-aliquot regenerative-dose protocol (SAR) with two-step pIRIR stimulation, with the first IR stimulation at 50°C or 200°C and the second at 290°C (pIR50IR290, pIR200IR290). Two of them were the SAR protocols with five-step or six-step IR stimulation at multiple elevated temperatures to 250°C or 300°C (MET-pIRIR250, MET-pIRIR300). The final one was the multiple-aliquot regenerative-dose (MAR) protocol with the MET-pIRIR300 signal, together with a 500°C heat treatment administered before the test dose (‘MAR with heat’). The results show that when the equivalent dose (De) of the sample was less than 500 Gy, all of the protocols gave consistent results; however, when De exceeded 750 Gy, all of the SAR protocols underestimated De. The pIR50IR290 signal had the highest degree of underestimation, while the pIR200IR290, MET-pIRIR250 and MET-pIRIR300 signals had similar De values and similar degrees of underestimation. Possible reasons for the SAR De underestimation are discussed. We suggest that only the ‘MAR with heat’ protocol is suitable for samples with De exceeding 750 Gy.","PeriodicalId":50421,"journal":{"name":"Geochronometria","volume":"0 1","pages":""},"PeriodicalIF":1.2,"publicationDate":"2021-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43185167","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-01-01DOI: 10.2478/geochr-2021-0002
Maurice Ndeye, D. Kébé, Matar Séne, Adama Harouna Athie
Abstract The prehistoric settlement of the west coast of the Senegalese-Mauritanian basin is established from archaeological remains and coal samples collected, sometimes in a stratigraphic context. However, the chronology issued, in the Before Present (BP) age, does not take into account the taphonomic context of the sites and the local reservoir age. Therefore, this article revisits the chronologies obtained based on the 14C literature and dating(s) acquired. Changes in time and duration of human occupancy of the area are shorter or longer depending on adequate yields of local reservoir age (Ndeye, 2008), which is a relevant element for marine samples. Thus, the archaeological implications observed with the reservoir effect are the rejuvenation or ageing of the dates, the age of the sites, the duration of occupation prehistoric or historical sites studied. Using the calibration programmes, it is noted that for the site of Senegal (Khant), without taking into account the reservoir effect, the human occupation is a priori, from the fifth millennium (Ancient Neolithic) to the third millennium BC (Middle Neolithic). However, if this marine reservoir effect is applied, the chronological periodisation goes from the fourth millennium to the first millennium. For the Mauritanian sites, the reservoir age correction is necessary for the Chami site while for the Tintan site is not required. Therefore, the calibrated archaeological chronologies obtained after the application of the marine reservoir effect are more relevant.
{"title":"Revision of the human’s occupations chronologies at the Senegalese and Mauritania sites by using marine reservoir ages corrections","authors":"Maurice Ndeye, D. Kébé, Matar Séne, Adama Harouna Athie","doi":"10.2478/geochr-2021-0002","DOIUrl":"https://doi.org/10.2478/geochr-2021-0002","url":null,"abstract":"Abstract The prehistoric settlement of the west coast of the Senegalese-Mauritanian basin is established from archaeological remains and coal samples collected, sometimes in a stratigraphic context. However, the chronology issued, in the Before Present (BP) age, does not take into account the taphonomic context of the sites and the local reservoir age. Therefore, this article revisits the chronologies obtained based on the 14C literature and dating(s) acquired. Changes in time and duration of human occupancy of the area are shorter or longer depending on adequate yields of local reservoir age (Ndeye, 2008), which is a relevant element for marine samples. Thus, the archaeological implications observed with the reservoir effect are the rejuvenation or ageing of the dates, the age of the sites, the duration of occupation prehistoric or historical sites studied. Using the calibration programmes, it is noted that for the site of Senegal (Khant), without taking into account the reservoir effect, the human occupation is a priori, from the fifth millennium (Ancient Neolithic) to the third millennium BC (Middle Neolithic). However, if this marine reservoir effect is applied, the chronological periodisation goes from the fourth millennium to the first millennium. For the Mauritanian sites, the reservoir age correction is necessary for the Chami site while for the Tintan site is not required. Therefore, the calibrated archaeological chronologies obtained after the application of the marine reservoir effect are more relevant.","PeriodicalId":50421,"journal":{"name":"Geochronometria","volume":"48 1","pages":"16 - 30"},"PeriodicalIF":1.2,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47191529","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-01-01DOI: 10.2478/geochr-2020-0037
S. Toyoda, Mana Amimoto
Abstract The E1’ centre is one of the most common paramagnetic defects observed by electron spin resonance (ESR) in natural quartz, the formation of which is, however, quite complicated. The dose response to gamma ray irradiation of the E1’ centre in natural quartz was systematically investigated in the present study to find that its dose response depends on the heating conditions of the sample before irradiation. The signal intensity decreases on irradiation when quartz has been heated up to 300°C, while it increases when heated above 400°C. The phenomena can be explained by the electronic processes that heating supplies electronic holes to the oxygen vacancies while gamma ray irradiation supplies electrons.
{"title":"Dose Response of the E1’ Centre in Quartz","authors":"S. Toyoda, Mana Amimoto","doi":"10.2478/geochr-2020-0037","DOIUrl":"https://doi.org/10.2478/geochr-2020-0037","url":null,"abstract":"Abstract The E1’ centre is one of the most common paramagnetic defects observed by electron spin resonance (ESR) in natural quartz, the formation of which is, however, quite complicated. The dose response to gamma ray irradiation of the E1’ centre in natural quartz was systematically investigated in the present study to find that its dose response depends on the heating conditions of the sample before irradiation. The signal intensity decreases on irradiation when quartz has been heated up to 300°C, while it increases when heated above 400°C. The phenomena can be explained by the electronic processes that heating supplies electronic holes to the oxygen vacancies while gamma ray irradiation supplies electrons.","PeriodicalId":50421,"journal":{"name":"Geochronometria","volume":"48 1","pages":"191 - 196"},"PeriodicalIF":1.2,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45985109","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-01-01DOI: 10.2478/GEOCHR-2020-0013
He Yang, Guoqiang Li, Ming Jin, Haixia Zhang, Xiaoyan Wang, Christopher Oldknow, Zhong Wang, Xin Huang
Abstract The residual ages and bleaching of K-feldspar post-IR IRSL (pIRIR) signals (pIR50IR170, pIR50IR290, and pIR200IR290) for a variety of modern sediment sources to the Bosten Lake basin in the southern Tian Shan of arid central Asia were assessed to identify the most appropriate facies to sample for ascertaining well-bleached, depositional ages associated with Quaternary paleolake development. Results indicate pIR50IR290 residual ages for pluvial fan, fluvial, and eolian sediments cluster at 40–6, 6–3, and 2–1 ka, respectively, and are depositional ages. Residual ages of pIR200IR290 signals are twice that of pIR50IR290 signals, while residual ages of pIR50IR170 signals are similar to that of pIR50IR290 signals for all samples. Eolian and fluvial samples show well-bleached, coarse-grained (90–125 μm) K-feldspar and poorly-bleached coarse grained K-feldspar from pluvial samples. High residual doses in fluvial and pluvial samples indicate it may not be advisable to apply pIRIR dating utilising different pIRIR signals to Holocene lacustrine samples. However, the residual ages measured for eolian deposits are small and can allow precise and robust assessment of paleolake development by targeting the K-feldspar pIR50IR170 signal to date Holocene samples and the pIR200IR290 and pIR50IR290 signals to date Pleistocene samples.
{"title":"The Bleaching of Different K-Feldspar pIRIR Signals of Source Materials of Lacustrine Sediment – A Case Study from Bosten Lake Basin in Arid Central Asia","authors":"He Yang, Guoqiang Li, Ming Jin, Haixia Zhang, Xiaoyan Wang, Christopher Oldknow, Zhong Wang, Xin Huang","doi":"10.2478/GEOCHR-2020-0013","DOIUrl":"https://doi.org/10.2478/GEOCHR-2020-0013","url":null,"abstract":"Abstract The residual ages and bleaching of K-feldspar post-IR IRSL (pIRIR) signals (pIR50IR170, pIR50IR290, and pIR200IR290) for a variety of modern sediment sources to the Bosten Lake basin in the southern Tian Shan of arid central Asia were assessed to identify the most appropriate facies to sample for ascertaining well-bleached, depositional ages associated with Quaternary paleolake development. Results indicate pIR50IR290 residual ages for pluvial fan, fluvial, and eolian sediments cluster at 40–6, 6–3, and 2–1 ka, respectively, and are depositional ages. Residual ages of pIR200IR290 signals are twice that of pIR50IR290 signals, while residual ages of pIR50IR170 signals are similar to that of pIR50IR290 signals for all samples. Eolian and fluvial samples show well-bleached, coarse-grained (90–125 μm) K-feldspar and poorly-bleached coarse grained K-feldspar from pluvial samples. High residual doses in fluvial and pluvial samples indicate it may not be advisable to apply pIRIR dating utilising different pIRIR signals to Holocene lacustrine samples. However, the residual ages measured for eolian deposits are small and can allow precise and robust assessment of paleolake development by targeting the K-feldspar pIR50IR170 signal to date Holocene samples and the pIR200IR290 and pIR50IR290 signals to date Pleistocene samples.","PeriodicalId":50421,"journal":{"name":"Geochronometria","volume":"48 1","pages":"272 - 283"},"PeriodicalIF":1.2,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48416525","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-01-01DOI: 10.2478/geochr-2020-0035
Kiriha Tanaka, J. Muto, Y. Yabe, T. Oka, H. Nagahama
Abstract We sheared simulated-quartz gouges using a low-velocity rotary shear apparatus and evaluated the relationship between electron spin resonance (ESR) intensity and displacement quantitatively considering problems of contaminants. ESR intensity of E1’ centre increased while OHC and peroxy centre kept constant with the increasing displacement up to 1.4 m. Microstructural analysis showed grain size reduction and fracture of starting gouges; hence, the fracture can affect the change in ESR intensity. ESR measurements were also conducted for starting gouges with variable amounts of contaminants, and it was confirmed that the effect of contaminants on the change in ESR intensity was negligible. Moreover, we estimated the temperature rise by the frictional heating on the surface and between particles, and it was shown that the effect of frictional heating on ESR intensity was also negligible in our experimental condition. Therefore, we could clarify the relationship between ESR intensity and fracturing with various displacements separately from contaminants and frictional heating. The results imply that the zero-setting of ESR signals cannot occur by the fracture with low frictional heating at the shallow depth.
{"title":"Effect of Fracture on ESR Intensity Using a Low-Velocity Rotary Shear Apparatus","authors":"Kiriha Tanaka, J. Muto, Y. Yabe, T. Oka, H. Nagahama","doi":"10.2478/geochr-2020-0035","DOIUrl":"https://doi.org/10.2478/geochr-2020-0035","url":null,"abstract":"Abstract We sheared simulated-quartz gouges using a low-velocity rotary shear apparatus and evaluated the relationship between electron spin resonance (ESR) intensity and displacement quantitatively considering problems of contaminants. ESR intensity of E1’ centre increased while OHC and peroxy centre kept constant with the increasing displacement up to 1.4 m. Microstructural analysis showed grain size reduction and fracture of starting gouges; hence, the fracture can affect the change in ESR intensity. ESR measurements were also conducted for starting gouges with variable amounts of contaminants, and it was confirmed that the effect of contaminants on the change in ESR intensity was negligible. Moreover, we estimated the temperature rise by the frictional heating on the surface and between particles, and it was shown that the effect of frictional heating on ESR intensity was also negligible in our experimental condition. Therefore, we could clarify the relationship between ESR intensity and fracturing with various displacements separately from contaminants and frictional heating. The results imply that the zero-setting of ESR signals cannot occur by the fracture with low frictional heating at the shallow depth.","PeriodicalId":50421,"journal":{"name":"Geochronometria","volume":"48 1","pages":"205 - 214"},"PeriodicalIF":1.2,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48766139","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}