{"title":"Luminescence Characteristics of Intraplate-Derived Olivines","authors":"Laine Clark-Balzan, Venera R. May, F. Preusser","doi":"10.2478/geochr-2021-0006","DOIUrl":null,"url":null,"abstract":"Abstract Olivine has so far attracted limited attention as a potential luminescence dosimeter. In particular, there is a dearth of information concerning the luminescence properties of geochemically characterised, pure olivine samples. Six well-characterised olivine samples from four intraplate settings are investigated in this study, including emission wavelengths and intensities, growth of signal with absorbed dose, signal stability and recovery of a given dose with a single aliquot regeneration (SAR) protocol. All tested olivines share a low-temperature (90–100°C) UV/blue thermoluminescence (TL) peak, and five of six samples also produce a low-temperature red/yellow emission. Higher temperature TL peaks, which would be thermally stable over geological timescales and could be used for dating, are rarely observed at low doses (c. 46 Gy), but detectable though dim at significantly higher doses (c. 460 Gy). Photostimulated luminescence (PSL) emissions are very dim, but reliably detected emissions are stimulated by blue, yellow and infrared (IR) light. PSL yielded generally successful dose recovery results; however, all tested signals are prone to significant anomalous fading and complex thermal transfer between unbleachable and bleachable traps. These characteristics must be addressed if olivine is to be used as a natural dosimeter for luminescence dating. Given the variety of luminescence responses, it appears that olivine samples in future dating work may need to be individually characterised prior to measurement.","PeriodicalId":50421,"journal":{"name":"Geochronometria","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geochronometria","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.2478/geochr-2021-0006","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Earth and Planetary Sciences","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract Olivine has so far attracted limited attention as a potential luminescence dosimeter. In particular, there is a dearth of information concerning the luminescence properties of geochemically characterised, pure olivine samples. Six well-characterised olivine samples from four intraplate settings are investigated in this study, including emission wavelengths and intensities, growth of signal with absorbed dose, signal stability and recovery of a given dose with a single aliquot regeneration (SAR) protocol. All tested olivines share a low-temperature (90–100°C) UV/blue thermoluminescence (TL) peak, and five of six samples also produce a low-temperature red/yellow emission. Higher temperature TL peaks, which would be thermally stable over geological timescales and could be used for dating, are rarely observed at low doses (c. 46 Gy), but detectable though dim at significantly higher doses (c. 460 Gy). Photostimulated luminescence (PSL) emissions are very dim, but reliably detected emissions are stimulated by blue, yellow and infrared (IR) light. PSL yielded generally successful dose recovery results; however, all tested signals are prone to significant anomalous fading and complex thermal transfer between unbleachable and bleachable traps. These characteristics must be addressed if olivine is to be used as a natural dosimeter for luminescence dating. Given the variety of luminescence responses, it appears that olivine samples in future dating work may need to be individually characterised prior to measurement.
期刊介绍:
Geochronometria is aimed at integrating scientists developing different methods of absolute chronology and using them in different fields of earth and other natural sciences and archaeology. The methods in use are e.g. radiocarbon, stable isotopes, isotopes of natural decay series, optically stimulated luminescence, thermoluminescence, EPR/ESR, dendrochronology, varve chronology. The journal publishes papers that are devoted to developing the dating methods as well as studies concentrating on their applications in geology, palaeoclimatology, palaeobiology, palaeohydrology, geocgraphy and archaeology etc.