Assessment of the Possibility of Reducing the Thermal Load in the Barn by using Mechanical Ventilation

IF 1.3 Q2 AGRICULTURE, MULTIDISCIPLINARY Acta Technologica Agriculturae Pub Date : 2021-12-01 DOI:10.2478/ata-2021-0029
J. Lendelová, Ana Haulíková, M. Žitňák, P. Kuchar
{"title":"Assessment of the Possibility of Reducing the Thermal Load in the Barn by using Mechanical Ventilation","authors":"J. Lendelová, Ana Haulíková, M. Žitňák, P. Kuchar","doi":"10.2478/ata-2021-0029","DOIUrl":null,"url":null,"abstract":"Abstract The aim of this work is to evaluate possibility of reducing the heat stress of milking cows via climatic indices and the influence of air flow velocity in the object with milking cows using the cross-section method. For the purposes of evaluation, there was selected a four-row housing facility for 160 milking cows with natural ventilation; for the summer period, natural ventilation was supplemented with mechanical ventilation (2877 m3·h−1 per cow). Measurements were conducted in the network created with 12 measuring points across the barn width, repeated in five cross-sections A, B, C, D and E, followed by further measurements in the longitudinal direction performed always in a row of 22 points placed in resting zones along the air flow direction. Considering the state of potentially high heat load with THI >78, it was observed that, according to ETIC, without employing the fans, ETIC in AOZ was higher than nAOZ, ETICAOZ = 25.34 ±0.42 vs ETICnOAZ = 24.51 ±0.44 (p <0.05). After activation of fans above lying area, ETIC in AOZ was lower than nAOZ, ETICAOZ = 23.40 ±0.61 vs ETICnAOZ = 23.68 ±0.60, which was not validated in evaluation of THI. Even though the limiting value of very high heat stress ETIC = 25 was not exceeded after activation of fans, decreasing of heat stress in rest zones did not reach recommended value ETIC = 20. A more significant improvement was validated in ETIC evaluation with measurements in longitudinal direction in the lying area – there was confirmed dominant influence of air flow speed. Heat load decreasing was influenced by speed and distribution of air in AOZ, both overall and local air exchanges in AOZ with ACHv >100 h−1, and barn length.","PeriodicalId":43089,"journal":{"name":"Acta Technologica Agriculturae","volume":"24 1","pages":"173 - 180"},"PeriodicalIF":1.3000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Technologica Agriculturae","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/ata-2021-0029","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1

Abstract

Abstract The aim of this work is to evaluate possibility of reducing the heat stress of milking cows via climatic indices and the influence of air flow velocity in the object with milking cows using the cross-section method. For the purposes of evaluation, there was selected a four-row housing facility for 160 milking cows with natural ventilation; for the summer period, natural ventilation was supplemented with mechanical ventilation (2877 m3·h−1 per cow). Measurements were conducted in the network created with 12 measuring points across the barn width, repeated in five cross-sections A, B, C, D and E, followed by further measurements in the longitudinal direction performed always in a row of 22 points placed in resting zones along the air flow direction. Considering the state of potentially high heat load with THI >78, it was observed that, according to ETIC, without employing the fans, ETIC in AOZ was higher than nAOZ, ETICAOZ = 25.34 ±0.42 vs ETICnOAZ = 24.51 ±0.44 (p <0.05). After activation of fans above lying area, ETIC in AOZ was lower than nAOZ, ETICAOZ = 23.40 ±0.61 vs ETICnAOZ = 23.68 ±0.60, which was not validated in evaluation of THI. Even though the limiting value of very high heat stress ETIC = 25 was not exceeded after activation of fans, decreasing of heat stress in rest zones did not reach recommended value ETIC = 20. A more significant improvement was validated in ETIC evaluation with measurements in longitudinal direction in the lying area – there was confirmed dominant influence of air flow speed. Heat load decreasing was influenced by speed and distribution of air in AOZ, both overall and local air exchanges in AOZ with ACHv >100 h−1, and barn length.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用机械通风降低谷仓热负荷的可能性评估
摘要本工作的目的是通过气候指标评估降低奶牛热应力的可能性,并使用截面法评估挤奶对象中气流速度的影响。为了进行评估,选择了一个可容纳160头自然通风挤奶奶牛的四排住房设施;夏季,自然通风辅以机械通风(每头牛2877 m3·h−1)。测量是在谷仓宽度上由12个测量点创建的网络中进行的,在五个横截面A、B、C、D和E中重复,然后在纵向方向上进行进一步的测量,始终在沿气流方向放置在休息区的22个点中进行。考虑到THI>78的潜在高热负荷状态,观察到,根据ETIC,在不使用风扇的情况下,AOZ中的ETIC高于nAOZ,ETICAOZ=25.34±0.42 vs ETICnOAZ=24.51±0.44(p 100 h−1)和谷仓长度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Acta Technologica Agriculturae
Acta Technologica Agriculturae AGRICULTURE, MULTIDISCIPLINARY-
CiteScore
2.50
自引率
28.60%
发文量
32
审稿时长
18 weeks
期刊介绍: Acta Technologica Agriculturae is an international scientific double-blind peer reviewed journal focused on agricultural engineering. The journal is multidisciplinary and publishes original research and review papers in engineering, agricultural and biological sciences, and materials science. Aims and Scope Areas of interest include but are not limited to: agricultural and biosystems engineering; machines and mechanization of agricultural production; information and electrical technologies; agro-product and food processing engineering; physical, chemical and biological changes in the soil caused by tillage and field traffic, soil working machinery and terramechanics; renewable energy sources and bioenergy; rural buildings; related issues from applied physics and chemistry, ecology, economy and energy.
期刊最新文献
Design and Analysis of a Solar Energy System for a Fruit Harvesting Robot in Pakistan Selected Parameters Affecting the Electricity Consumption of Automatic Milking Systems Testing of Regulating and Non-Regulating Hydraulic Pumps Theory of Heap Particle Motion in Vibration Cleaning of Potatoes Performance Evaluation of Artificial Neural Network Modelling to a Ploughing Unit in Various Soil Conditions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1