Amazonian dark earths enhance the establishment of tree species in forest ecological restoration

IF 2.1 Q3 SOIL SCIENCE Frontiers in soil science Pub Date : 2023-05-05 DOI:10.3389/fsoil.2023.1161627
A. S. Freitas, Luís Felipe Guandalin Zagatto, Gabriel Silvestre Rocha, Franciele Muchalak, Solange dos Santos Silva, A. Muniz, R. Hanada, S. Tsai
{"title":"Amazonian dark earths enhance the establishment of tree species in forest ecological restoration","authors":"A. S. Freitas, Luís Felipe Guandalin Zagatto, Gabriel Silvestre Rocha, Franciele Muchalak, Solange dos Santos Silva, A. Muniz, R. Hanada, S. Tsai","doi":"10.3389/fsoil.2023.1161627","DOIUrl":null,"url":null,"abstract":"Introduction Deforestation of areas for agriculture and cattle breeding is the leading cause of ecological degradation and loss of biodiversity. The solution to mitigate these damages relies on techniques that improve soil health and the microbial quality of these degraded areas. Here, we demonstrate that the high nutrient and microbiological contents of Amazonian Dark Earths (ADE) can promote the development of trees used in ecological restoration projects. Methods We used degraded soil from crops as control and ADE from the Central Amazon to conduct the experiment, using 20% of ADE as inoculum in degraded agricultural soil. Our goal was to assess whether a small amount of ADE could promote changes that improve plant development similar to its growth under a 100%ADE. We simulated conversion from pasture to forest restoration area by planting U. brizantha in all pots. After 60 days, we removed it and planted Cecropia pachystachya, Peltophorum dubium, and Cedrela fissilis. Results Our results demonstrated that both 20%ADE and 100%ADE treatments increased pasture productivity and, consequently, soil carbon stock. Also, in these treatments, P. dubium and C. fissilis had better growth and development, with 20%ADE plants showing a performance similar to those planted in 100%ADE. Both 20%ADE and 100%ADE showed similar numbers of taxa, being significantly higher than in the control soil. Discussion The 20%ADE was sufficient to increase significantly the microbial richness in the soil, providing several beneficial microorganisms to all tree species such as Pedomicrobium, Candidatus Nitrososphaera, and members of Paenebacillaceae. Nevertheless, C. pachystachya, a common pioneer tree in the Amazonian Forest showed a small response even to 100%ADE with a corresponding lower taxa number than the other two species. In conclusion, we point out that microbial structure remains very similar among plants but dissimilar among treatments, highlighting the role of ADE as an enhancer of plant development and beneficial microbiota enrichment in the rhizosphere. The use of 20%ADE was sufficient to alter the microbial community. Therefore, we believe our data could contribute to speeding up forest restoration programs by adopting new biotechnological approaches for forest restoration ecology.","PeriodicalId":73107,"journal":{"name":"Frontiers in soil science","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2023-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in soil science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/fsoil.2023.1161627","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"SOIL SCIENCE","Score":null,"Total":0}
引用次数: 1

Abstract

Introduction Deforestation of areas for agriculture and cattle breeding is the leading cause of ecological degradation and loss of biodiversity. The solution to mitigate these damages relies on techniques that improve soil health and the microbial quality of these degraded areas. Here, we demonstrate that the high nutrient and microbiological contents of Amazonian Dark Earths (ADE) can promote the development of trees used in ecological restoration projects. Methods We used degraded soil from crops as control and ADE from the Central Amazon to conduct the experiment, using 20% of ADE as inoculum in degraded agricultural soil. Our goal was to assess whether a small amount of ADE could promote changes that improve plant development similar to its growth under a 100%ADE. We simulated conversion from pasture to forest restoration area by planting U. brizantha in all pots. After 60 days, we removed it and planted Cecropia pachystachya, Peltophorum dubium, and Cedrela fissilis. Results Our results demonstrated that both 20%ADE and 100%ADE treatments increased pasture productivity and, consequently, soil carbon stock. Also, in these treatments, P. dubium and C. fissilis had better growth and development, with 20%ADE plants showing a performance similar to those planted in 100%ADE. Both 20%ADE and 100%ADE showed similar numbers of taxa, being significantly higher than in the control soil. Discussion The 20%ADE was sufficient to increase significantly the microbial richness in the soil, providing several beneficial microorganisms to all tree species such as Pedomicrobium, Candidatus Nitrososphaera, and members of Paenebacillaceae. Nevertheless, C. pachystachya, a common pioneer tree in the Amazonian Forest showed a small response even to 100%ADE with a corresponding lower taxa number than the other two species. In conclusion, we point out that microbial structure remains very similar among plants but dissimilar among treatments, highlighting the role of ADE as an enhancer of plant development and beneficial microbiota enrichment in the rhizosphere. The use of 20%ADE was sufficient to alter the microbial community. Therefore, we believe our data could contribute to speeding up forest restoration programs by adopting new biotechnological approaches for forest restoration ecology.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
亚马逊暗土加强了森林生态恢复中树种的建立
引言农业和养牛区的森林砍伐是生态退化和生物多样性丧失的主要原因。减轻这些损害的解决方案依赖于改善土壤健康和这些退化地区微生物质量的技术。在这里,我们证明了亚马逊暗地球(ADE)的高营养和微生物含量可以促进生态恢复项目中使用的树木的发展。方法以作物退化土壤为对照,以亚马逊中部的ADE为接种剂,在退化农业土壤中接种20%的ADE。我们的目标是评估少量的ADE是否可以促进改善植物发育的变化,类似于在100%ADE下的生长。我们模拟了从牧场到森林恢复区的转变,在所有的花盆中种植了黑胡椒。60天后,我们将其移走,并种植厚叶Cecropia pachystachya、Peltophorum dubium和Cedrela fissilis。结果我们的研究结果表明,20%ADE和100%ADE处理都提高了牧场生产力,从而提高了土壤碳储量。此外,在这些处理中,P.dubium和C.fissilis具有更好的生长和发育,20%的ADE植物表现出与100%的ADE中种植的植物相似的性能。20%ADE和100%ADE都显示出相似的分类群数量,显著高于对照土壤。讨论20%的ADE足以显著增加土壤中的微生物丰富度,为所有树种提供几种有益的微生物,如Pedomicrobium、Candidatus Nitrosospeera和Paenebacillaceae成员。尽管如此,亚马逊森林中常见的先锋树C.pachystachya即使对100%ADE也表现出很小的反应,其分类群数量相应地低于其他两个物种。总之,我们指出,不同植物之间的微生物结构仍然非常相似,但不同处理之间的结构不同,这突出了ADE作为植物发育促进剂和根际有益微生物群富集的作用。使用20%ADE足以改变微生物群落。因此,我们相信,我们的数据可以通过采用新的森林恢复生态学生物技术方法来加快森林恢复计划。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
0
期刊最新文献
Groundwater fluoride prediction modeling using physicochemical parameters in Punjab, India: a machine-learning approach Soil ecology, food systems, and organic waste: the critical network nobody is talking about Long-term fertilization and liming increase soil fertility but reduce carbon stratification and stocks of paddy rice soils Effects of local farming practices on soil organic carbon content, enzymatic activities, and microbial community structure in semi-arid soils of Morocco Rice straw incorporation and Azolla application improves agronomic nitrogen-use-efficiency and rice grain yields in paddy fields
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1