MODEL AND METHOD OF CONTROLLED PYROLYSIS OF ORGANIC SUBSTANCES OF VARIABLE COMPOSITION

K. Beglov, A. Brunetkin, M. Maximov, E. O. Ulitskaya
{"title":"MODEL AND METHOD OF CONTROLLED PYROLYSIS OF ORGANIC SUBSTANCES OF VARIABLE COMPOSITION","authors":"K. Beglov, A. Brunetkin, M. Maximov, E. O. Ulitskaya","doi":"10.34229/0572-2691-2021-1-12","DOIUrl":null,"url":null,"abstract":"The issues of organization of the process of slow pyrolysis of organic substances, in the general case of unknown and variable composition, are considered. The relevance of the work is determined by considering the possibility of using various organic waste (domestic, agricultural, industrial) without their preliminary sorting and drying to obtain secondary energy resources of a known (controlled) composition. The novelty of the work is due to the development of a model for the method of controlled pyrolysis or gasification of organic substances with a minimum amount of solid residues at a maximum calorific value of the resulting mixture of combustible gases. A process based on filtration combustion in superadiabatic mode is considered. In existing devices, when this mode is implemented, a counter flow of the feedstock and reaction products is organized. As a result, a part of the water vapor generated at the drying stage is part of the mixture of reaction products and, accordingly, reduce their energy value. The scheme of the process proposed for consideration is based on the organization of the associated flow of feedstock and reaction products. As a result, the resulting carbon dioxide and water vapor are used as additional oxidizing agents. As a result, the carbonaceous residue decreases with a simultaneous increase in the composition of the mixture of gaseous products of carbon monoxide and hydrogen. A scheme for real-time monitoring of the composition of the feedstock during pyrolysis (gasification) is proposed. Knowledge of the composition makes it possible to control the process of its processing in order to: a) organize the optimal gasification process in terms of maximizing the amount and energy value of the mixture of gaseous reaction products; b) control the consumption of the processed feedstock in order to produce the required amount of product gas at any given time.","PeriodicalId":54874,"journal":{"name":"Journal of Automation and Information Sciences","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Automation and Information Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.34229/0572-2691-2021-1-12","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

Abstract

The issues of organization of the process of slow pyrolysis of organic substances, in the general case of unknown and variable composition, are considered. The relevance of the work is determined by considering the possibility of using various organic waste (domestic, agricultural, industrial) without their preliminary sorting and drying to obtain secondary energy resources of a known (controlled) composition. The novelty of the work is due to the development of a model for the method of controlled pyrolysis or gasification of organic substances with a minimum amount of solid residues at a maximum calorific value of the resulting mixture of combustible gases. A process based on filtration combustion in superadiabatic mode is considered. In existing devices, when this mode is implemented, a counter flow of the feedstock and reaction products is organized. As a result, a part of the water vapor generated at the drying stage is part of the mixture of reaction products and, accordingly, reduce their energy value. The scheme of the process proposed for consideration is based on the organization of the associated flow of feedstock and reaction products. As a result, the resulting carbon dioxide and water vapor are used as additional oxidizing agents. As a result, the carbonaceous residue decreases with a simultaneous increase in the composition of the mixture of gaseous products of carbon monoxide and hydrogen. A scheme for real-time monitoring of the composition of the feedstock during pyrolysis (gasification) is proposed. Knowledge of the composition makes it possible to control the process of its processing in order to: a) organize the optimal gasification process in terms of maximizing the amount and energy value of the mixture of gaseous reaction products; b) control the consumption of the processed feedstock in order to produce the required amount of product gas at any given time.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
可变组分有机物控制热解模型与方法
考虑了在成分未知和可变的一般情况下,有机物质缓慢热解过程的组织问题。这项工作的相关性是通过考虑在不进行初步分类和干燥的情况下使用各种有机废物(生活、农业、工业)以获得已知(受控)成分的二次能源的可能性来确定的。这项工作的新颖性是由于开发了一种控制热解或气化有机物质的方法模型,该方法在所得可燃气体混合物的最大热值下具有最小量的固体残留物。考虑了一种基于超绝热模式下过滤燃烧的过程。在现有装置中,当实施该模式时,组织原料和反应产物的逆流。结果,在干燥阶段产生的一部分水蒸气是反应产物混合物的一部分,因此降低了它们的能量值。建议考虑的工艺方案是基于原料和反应产物的相关流动的组织。结果,所得的二氧化碳和水蒸气被用作额外的氧化剂。结果,碳质残留物随着一氧化碳和氢气的气态产物的混合物的组成的同时增加而减少。提出了一种在热解(气化)过程中实时监测原料成分的方案。组合物的知识使控制其处理过程成为可能,以便:a)在最大化气体反应产物混合物的量和能量值方面组织最佳气化过程;b) 控制经处理的原料的消耗,以便在任何给定时间产生所需量的产物气体。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Automation and Information Sciences
Journal of Automation and Information Sciences AUTOMATION & CONTROL SYSTEMS-
自引率
0.00%
发文量
0
审稿时长
6-12 weeks
期刊介绍: This journal contains translations of papers from the Russian-language bimonthly "Mezhdunarodnyi nauchno-tekhnicheskiy zhurnal "Problemy upravleniya i informatiki". Subjects covered include information sciences such as pattern recognition, forecasting, identification and evaluation of complex systems, information security, fault diagnosis and reliability. In addition, the journal also deals with such automation subjects as adaptive, stochastic and optimal control, control and identification under uncertainty, robotics, and applications of user-friendly computers in management of economic, industrial, biological, and medical systems. The Journal of Automation and Information Sciences will appeal to professionals in control systems, communications, computers, engineering in biology and medicine, instrumentation and measurement, and those interested in the social implications of technology.
期刊最新文献
Validity and Reliability Study of Turkish Version of Clinical Assessment Interview for Negative Symptoms (CAINS). OPTIMIZATION OF THE TRAJECTORY OF SENSORS MOTION TAKING INTO ACCOUNT THE IMPORTANCE OF THE AREAS OF THE MONITORING AREA SEGMENTS AND THE PROBABILITY OF DETECTION OF OBJECTS ALGORITHMIC AND HARDWARE TOOLS FOR MOVING TARGETS DETECTION ON THE PROJECTION SCREEN FROM THE LASER EMITTER OF THE MULTIMEDIA TRAINER ON DEGENARATE CASE OF THREE-DIMENTIONAL PROBLEM OF THICK ELASTIC PLATESʼ DYNAMICS VALIDATION OF LAND DEGRADATION CARDS ON THE BASIS OF GEOSPATIAL DATA
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1